Skip to main content

Advertisement

Log in

A generalization of environmental productivity analysis

  • Published:
Journal of Productivity Analysis Aims and scope Submit manuscript

Abstract

This paper aims to analyze environmental Total Factor Productivity (TFP) change. Indeed, innovative environmental TFP measures are introduced through convex and non convex environmental production processes. Hence, the impacts of input and output quality change on environmental productivity variation are underscored. In addition, general decomposition of the new ratio- and difference-based environmental TFP measures is proposed. Finally, an empirical example is provided to illustrate these propositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Sahoo et al. (2011) propose a survey on the modeling of environmental production technologies by considering either weak or strong disposability assumptions for undesirable outputs.

  2. In Tone and Sahoo (2003) and Sahoo and Tone (2013), the authors specify that indivisibility in production process occurs when some capital goods are only available in certain amount (e.g. integer amount) involving an optimum capacity level such that not using this optimum capacity would lead to an increase of the unit cost. (Lipsey, 2018) refers to this definition as the ex post indivisibility.

  3. In this paper, the term “quality” refers to the polluting and the no polluting characteristics of inputs and outputs.

References

  • Abad AA, Lobianco (2021) BDisposal.jl - A non parametric efficiency and productivity analysis through the B-disposal scheme software implemented in the Julia programming language, (Version v0.0.2) Zenodo. https://doi.org/10.5281/zenodo.5068627

  • Abad A (2018) Les Enseignements de la Micro-économie de la Production face aux Enjeux Environnementaux: Etude des Productions Jointes. Théorie et Applications, Ph.D dissertation, University of Perpignan.

  • Abad A (2015) An environmental generalised Luenberger-Hicks-Moorsteen productivity indicator and an environmental generalised Hicks-Moorsteen productivity index. J of Environ Manag 161:325–334

    Article  Google Scholar 

  • Aiken DV, Pasurka CA (2003) Adjusting the measurement of US manufacturing productivity for air pollution emissions control. Resour and Energy Econ 25:329–351

    Article  Google Scholar 

  • Ang F, Kerstens PJ (2017) Decomposing the Luenberger-Hicks-Moorsteen total factor productivity indicator: an application to U.S. agriculture. Eur J of Oper Res 260:359–370

    Article  Google Scholar 

  • Azad MAS, Ancev T (2014) Measuring environmental efficiency of agricultural water use: a Luenberger environmental indicator. J of Environ Manag 145:314–320

    Article  Google Scholar 

  • Banker RD, Charnes A, Cooper WW (1984) Some models for estimating technical and scale efficiency in data envelopment analysis. Manag Sci 30:1078 - 1092

    Google Scholar 

  • Bjurek H (1996) The malmquist total factor productivity index. Scandinavian J of Econ 98:303–313

    Article  Google Scholar 

  • Bjurek H, Førsund FR, Hjalmarsson L (1998) Malmquist Productivity Indices: An Empirical Investigation, in : R. Färe, S. Grosskopf, R. Russell (eds) Index Numbers: Essays in Honour of Sten Malmquist, Boston, Kluwer

  • Boussemart JP, Briec W, Kerstens K, Poutineau J-C (2003) Luenbergerand Malmquist productivity indices: theoretical comparisons and empirical illustration. Bull of Econ Res 55(4):391–405

    Article  Google Scholar 

  • Borger D, Kerstens K(1996) Cost efficiency of Belgian Local Governments: a comparative analysis of FDH, DEA and econometric approaches Reg Sci and Urban Econ 26:145–170

    Article  Google Scholar 

  • Boyd GA, McCelland JD (1999) The impact of environmental constraints on productivity improvement in integrated paper plants. J of Environ Econ and Manag 38:121–142

    Article  Google Scholar 

  • Briec W (1997) A graph-type extension of farrell technical efficiency measure. J of Prod Anal 8(1):95–110

    Article  Google Scholar 

  • Briec W, Kerstens K (2004) A Luenberger-Hicks-Moorsteen productivity indicator: its relation to the hicks-moorsteen productivity index and the luenberger productivity indicator. Econ Theory 23(4):925–939

    Article  Google Scholar 

  • Caves DW, Christensen LR, Diewert WE (1982) The Economic Theory of index numbers and the measurement of inputs, outputs and productivity. Econometrica 50:1393–1414

    Article  Google Scholar 

  • Chambers R, Chung Y, Färe R (1996) Benefit and distance functions. J of Econ Theory 70(2):407–419

    Article  Google Scholar 

  • Chambers RG (2002) Exact nonradial input, output, and productivity measurement. Economic Theory 20:751–765

    Article  Google Scholar 

  • Chavas J-P, Briec W (2012) On economic efficiency under non-convexity. Economic Theory 50:671–701

    Article  Google Scholar 

  • Chavas J-P, Briec W (2018) Efficiency under uncertainty and non-convexity: evaluating the role of probabilities. Economica 86(344):832–853

    Article  Google Scholar 

  • Coelli T, Lauwers L, Van Huylenbroeck G (2007) Environmental efficiency measurement and the materials balance condition. J of Prod Anal 28:3–12

    Article  Google Scholar 

  • Chung YH, Färe R, Grosskopf S (1997) Productivity and undesirable outputs: a directional distance function approach. J of Environ Manag 51:229–240

    Article  Google Scholar 

  • Dasgupta P, Mäler KG (2003) The economics of non-convex ecosystems: introduction. Environ and Resour Econ 26(4):499–525

    Article  Google Scholar 

  • Debreu G (1951) The coefficient of ressource utilisation. Econometrica 19:273–292

    Article  Google Scholar 

  • Diewert WE, Fox KJ (2017) Decomposing productivity indexes into explanatory factors. Eur J of Oper Res 256:275–291

    Article  Google Scholar 

  • Färe R, Grosskopf S, Lovell CAK (1985) Hyperbolic Graph Efficiency Measures, in: The Measurement of Efficiency of Production, Springer, Dordrecht, 107–130

  • Färe R, Grosskopf S, Lovell CAK, Pasurka C (1989) Multilateral productivity comparisons when some outputs are undesirable: a non parametric approach. The Rev of Econ and Stat 71:90–98

    Article  Google Scholar 

  • Färe R, Grosskopf S, Norris M, Zhang Z (1994) Productivity growth, technical progress, and efficiency change in industrialized countries. The Am Econ Rev 84:66–83

    Google Scholar 

  • Färe R, Grosskopf S, Hernandez-Sancho F (2004) Environmental performance: an index number approach. Resour and Energy Econ 26:343–352

    Article  Google Scholar 

  • Färe R, Grosskopf S, Lundgren T, Marklund P-O, Zhou W (2012) Productivity: should we include bads? CERE Working Paper 2012:13

    Google Scholar 

  • Farrell MJ (1957) The measurement of technical efficiency. J of the Royal Stat Soc 120(3):253–290

    Article  Google Scholar 

  • Førsund FR (2009) Good modeling of bad outputs: pollution and multiple-output production. Int Rev of Environ and Resour Econ 3:1–38

    Article  Google Scholar 

  • Førsund FR (2016) Multi-equation modelling of desirable and undesirable outputs satisfying the material balance, Department of Economics, University of Oslo, Memorandum No 3

  • Grifell-Tatjé E, Kerstens K (2008) Incentive regulation and the role of convexity in benchmarking electricity distribution: economists versus engineers. Annals of Public and Cooperative Economics 79(2):227–248

    Article  Google Scholar 

  • Hailu A, Veeman TS (2000) Environmentally sensitive productivity analysis of the canadian pulp and paper industry, 1959–1994:an input distance function approach. Journal of Environmental Economics and Management 40:251–274

    Article  Google Scholar 

  • Hoang V-N, Coelli T (2011) Measurement of agricultural total factor productivity growth incorporating environmental factors: a nutrients balance approach. J of Environ Econ and Manag 62(3):462–474

    Article  Google Scholar 

  • Jeon BM, Sickles RC (2004) The role of environmental factors in growth accounting: a nonparametric analysis. J of Appl Econometrics 19(5):567–591

    Article  Google Scholar 

  • Kerstens K, Van de Woestyne I (2014) Comparing Malmquist and Hicks-Moorsteen productivity indices: exploring the impact of unbalanced vs. balanced panel data. Eur J of Oper Res 233:749–758

    Article  Google Scholar 

  • Kumar S (2006) Environmentally sensitive productivity growth: a global analysis using Malmquist-Luenberger index. Ecol Econ 56(2):280–293

    Article  Google Scholar 

  • Lauwers L, Van Huylenbroeck G (2003) Materials balance based modelling of environmental efficiency. In 25th international conference of agricultural economist, South Africa

  • Lauwers L (2009) Justifying the incorporation of the materials balance principle into frontier-based eco-efficiency models. Ecol Econ 68:1605–1614

    Article  Google Scholar 

  • Lipsey RG (2018) A Reconsideration of the Theory of Non-Linear Scale Effects: The Sources of Varying Returns to, and Economies of, Scale, Elements in Evolutionary Economics, Cambridge: Cambridge University Press. https://doi.org/10.1017/9781108555029

  • Managi S (2010) Productivity measures and effects from subsidies and trade: an empirical analysis for Japan’s forestry. Appl Econ 42(30):3871–3883

    Article  Google Scholar 

  • Miao Z, Chen X, Balezentis T, Sun C (2019) Atmospheric environmental productivity across the provinces of China: Joint decomposition of range adjusted measure and Luenberger productivity indicator. Energy Policy 132:665–677

    Article  Google Scholar 

  • Murty S, Russell RR, Levkoff SB (2012) On modeling pollution-generating technologies. J of Environ Econ and Manag 64:117–135

    Article  Google Scholar 

  • Murty S, Russell RR (2020) Bad Outputs, in: S. Ray, R. Chambers, S. Kumbhakar (eds) Handbook of Production Economics, Singapore, Springer

  • Nakano M, Managi S (2008) Regulatory reforms and productivity: an empirical analysis of the Japanese electricity industry. Energy Policy 36(1):201–209

    Article  Google Scholar 

  • O’Donnell CJ (2012) An aggregate quantity-price framework for measuring and decomposing productivity and profitability change. J of Prod Anal 38(3):255–272

    Article  Google Scholar 

  • Oh D, Heshmati A (2010) A sequential Malmquist-Luenberger productivity index: environmentally sensitive productivity growth considering the progressive nature of technology. Energy Economics 32(6):1345–1355

    Article  Google Scholar 

  • Picazo-Tadeo AJ, Castillo-Giménez J, Beltrán-Esteve M (2014) An intertemporal approach to measuring environmental performance with directional distance functions: Greenhouse gas emissions in the European Union. Ecol Econ 100:173–182

    Article  Google Scholar 

  • Pittman RW (1983) Multilateral productivity comparisons with undesirable outputs. The Econ J 93:883–891

    Article  Google Scholar 

  • Rödseth KL (2017) Axioms of a polluting technology: a materials balance approach. Environ and Resour Econ 67(1):1–22

    Article  Google Scholar 

  • Sahoo BK, Tone K (2013) Non-parametric measurement of economies of scale and scope in non-competitive environment with price uncertainty. Omega 41(1):97–111

    Article  Google Scholar 

  • Sahoo BK, Luptacik M, Mahlberg B (2011) Alternative measures of environmental technology structure in DEA: an application. Eur J of Oper Res 215(3):750–762

    Article  Google Scholar 

  • Shen Z, Boussemart J-P, Leleu H (2017) Aggregate green productivity growth in OECD’s countries. Int J of Prod Econ 189:30–39

    Article  Google Scholar 

  • Shephard RW (1970) Theory of Cost and Production Functions, Princeton: Princeton University Press

  • Solow R (1957) Technical change and the aggregate production function. The Rev of Econ and Stat 39:312–320

    Article  Google Scholar 

  • Tone K, Sahoo BK (2003) Scale, indivisibilities and production function in data envelopment analysis. Int J of Prod Econ 84(2):165–192

    Article  Google Scholar 

  • Tschirhart J (2012) Biology as a source of non-convexities in ecological production functions. Environ and Resour Econ 51(2):189–213

    Article  Google Scholar 

  • Tulkens H (1993) On FDH efficiency analysis: some methodological issues and applications to retail banking, courts and urban transit. J of Prod Anal 4:183–210

    Article  Google Scholar 

  • Tyteca D (1996) On the measurement of the environmental performance of firms - a literature review and a productive efficiency perspective. J of Environ Manag 46:281–308

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the three anonymous referees for their helpful comments that greatly improved the exposition of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Abad.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abad, A., Ravelojaona, P. A generalization of environmental productivity analysis. J Prod Anal 57, 61–78 (2022). https://doi.org/10.1007/s11123-021-00620-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11123-021-00620-1

Keywords

JEL

Navigation