Abstract
The overall goal of this study is to introduce latent class analysis (LCA) as an alternative approach to latent subgroup analysis. Traditionally, subgroup analysis aims to determine whether individuals respond differently to a treatment based on one or more measured characteristics. LCA provides a way to identify a small set of underlying subgroups characterized by multiple dimensions which could, in turn, be used to examine differential treatment effects. This approach can help to address methodological challenges that arise in subgroup analysis, including a high Type I error rate, low statistical power, and limitations in examining higher-order interactions. An empirical example draws on N = 1,900 adolescents from the National Longitudinal Survey of Adolescent Health. Six characteristics (household poverty, single-parent status, peer cigarette use, peer alcohol use, neighborhood unemployment, and neighborhood poverty) are used to identify five latent subgroups: Low Risk, Peer Risk, Economic Risk, Household & Peer Risk, and Multi-Contextual Risk. Two approaches for examining differential treatment effects are demonstrated using a simulated outcome: 1) a classify-analyze approach and, 2) a model-based approach based on a reparameterization of the LCA with covariates model. Such approaches can facilitate targeting future intervention resources to subgroups that promise to show the maximum treatment response.



Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Agrawal, A., Lynskey, M. T., Madden, P. A., Bucholz, K. K., & Heath, A. C. (2007). A latent class analysis of illicit drug abuse/dependence: Results from the National Epidemiological Survey on Alcohol and Related Conditions. Addiction, 102, 94–104.
Agresti, A. (2002). Categorical data analysis (2nd ed.). New York: Wiley.
Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and interpreting interactions. Thousand Oaks, CA: Sage.
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716–723.
Anderson, K. G., Ramo, D. E., Cummins, K. M., & Brown, S. A. (2010). Alcohol and drug involvement after adolescent treatment and functioning during emerging adulthood. Drug and Alcohol Dependence, 107, 171–181.
Arthur, M. W., Hawkins, J. D., Pollard, J., Catalano, R. F., & Baglioni, A. J. (2002). Measuring risk and protective factors for substance use, delinquency, and other adolescent problem behaviors: The Communities that Care Youth Survey. Evaluation Review, 26, 575–601.
Baucom, B. R., Atkins, D. C., Simpson, L. E., & Christensen, A. (2009). Prediction of response to treatment in a randomized clinical trial of couple therapy: A 2-year follow-up. Journal of Consulting and Clinical Psychology, 77, 160–173.
Bergman, L. R., & Magnusson, D. (1997). A person-oriented approach in research on developmental psychopathology. Development and Psychopathology, 9, 291–319.
Bozdogan, H. (1987). Model selection and Akaike’s Information Criterion (AIC): The general theory and its analytical extensions. Psychometrika, 52, 345–370.
Brooks-Gunn, J., Duncan, G. J., & Maritato, N. (1997). Poor families, poor outcomes: The well-being of children and youth. In G. J. Duncan & J. Brooks-Gunn (Eds.), Consequences of growing up poor (pp. 1–17). New York: Russell Sage.
Catalano, R. F., & Hawkins, J. D. (1996). The social development model: A theory of anti-social behavior. In J. D. Hawkins (Ed.), Delinquency and crime: Current theories (pp. 149–197). New York: Cambridge University Press.
Chassin, L., Pitts, S. C., & Prost, J. (2002). Binge drinking trajectories from adolescence to emerging adulthood in a high-risk sample: Predictors and substance abuse outcomes. Journal of Consulting and Clinical Psychology, 70, 67–78.
Chung, T., Maisto, S. A., Cornelius, J. R., & Marti, C. S. (2004). Adolescents’ alcohol and drug use trajectories in the year following treatment. Journal of Studies on Alcohol, 65, 105–114.
Cicchetti, D., & Rogosch, F. A. (1996). Equifinality and multifinality in developmental psychopathology. Development and Psychopathology, 8, 597–600.
Coffman, D. L., Patrick, M. E., Palen, L. A., Rhoades, B. L., & Ventura, A. K. (2007). Why do high school seniors drink? Implications for a targeted approach to intervention. Prevention Science, 8, 241–248.
Coie, J. D., Watt, N. F., West, S. G., Hawkins, J. D., Asarnow, J. R., Markman, H. J., et al. (1993). The science of prevention: A conceptual framework and some directions for a national research program. American Psychologist, 48, 1013–1022.
Colder, C. R., Campbell, R. T., Ruel, E., Richardson, J. L., & Flay, B. R. (2002). A finite mixture model of growth trajectories of adolescent alcohol use: Predictors and consequences. Journal of Consulting and Clinical Psychology, 70, 976–985.
Collins, L. M., & Lanza, S. T. (2010). Latent class and latent transition analysis: With applications in the social, behavioral, and health sciences. New York: Wiley.
Collins, L. M., Fidler, P. L., Wugalter, S. E., & Long, J. D. (1993). Goodness-of-fit testing for latent class models. Multivariate Behavioral Research, 28, 375–389.
Collins, L. M., Graham, J. W., Long, J. D., & Hansen, W. B. (1994). Crossvalidation of latent class models of early substance use onset. Multivariate Behavioral Research, 29, 165–183.
Collins, L. M., Murphy, S. A., & Bierman, K. (2004). A conceptual framework for adaptive preventive interventions. Prevention Science, 3, 185–196.
Conduct Problems Prevention Research Group. (1992). A developmental and clinical model for the prevention of conduct disorders: The FAST Track Program. Development and Psychopathology, 4, 509–527.
Dayton, C. M., & Macready, G. B. (1988). Concomitant variable latent class models. Journal of the American Statistical Association, 83, 173–178.
Elkin, I., Gibbons, R. D., Shea, M. T., Sotsky, S. M., Watkins, J. T., Pilkonis, P. A., et al. (1995). Initial severity and differential treatment outcome in the National Institute of Mental Health Treatment of Depression Collaborative Research Program. Journal of Consulting and Clinical Psychology, 63, 841–847.
Everitt, B. S., & Hand, D. J. (1981). Finite mixture distributions. London: Chapman and Hall.
Fairchild, A. J., & MacKinnon, D. P. (2009). A general model for testing mediation and moderation effects. Prevention Science, 10, 87–99.
Gerard, J. M., & Buehler, C. (2004). Cumulative environmental risk and youth maladjustment: The role of youth attributes. Child Development, 75, 1832–1849.
Goodman, L. A. (1974). Exploratory latent structure analysis using both identifiable and unidentifiable models. Biometrika, 61, 215–231.
Harris, K. M., Halpern, C. T., Whitsel, E., Hussey, J., Tabor, J., Entzel, P., & Udry, J. R. (2009). The National Longitudinal Study of Adolescent Health: Research Design [WWW document]. URL: http://www.cpc.unc.edu/projects/addhealth/design.
Hawkins, J. D., Catalano, R. F., & Miller, J. Y. (1992). Risk and protective factors for alcohol and other drug problems in adolescence and early adulthood: Implications for substance abuse prevention. Psychological Bulletin, 112, 64–105.
Kessler, R. C., Chiu, W. T., Demler, O., & Walters, E. E. (2005). Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Archives of General Psychiatry, 62, 617–627.
Komro, K. A., Tobler, A. L., Maldonado-Molina, M. M., & Perry, C. L. (2010). Effects of alcohol use initiation patterns on high-risk behaviors among urban, low-income, young adolescents. Prevention Science, 11, 14–23.
Langeheine, R., Pannekoek, J., & van de Pol, F. (1996). Bootstrapping goodness-of-fit measures in categorical data analysis. Sociological Methods & Research, 24, 492–516.
Lanza, S. T., Collins, L. M., Schafer, J. L., & Flaherty, B. P. (2005). Using data augmentation to obtain standard errors and conduct hypothesis tests in latent class and latent transition analysis. Psychological Methods, 10, 84–100.
Lanza, S. T., Collins, L. M., Lemmon, D. R., & Schafer, J. L. (2007). PROC LCA: A SAS procedure for latent class analysis. Structural Equation Modeling, 14, 671–694. PMCID: PMC2785099.
Lanza, S. T., Lemmon, D. R., Dziak, J. J., Huang, L., Schafer, J. L., & Collins, L. M. (2010). PROC LCA & PROC LTA user’s guide version 1.2.5 beta. University Park, PA: The Methodology Center, Penn State.
Lanza, S. T., Rhoades, B. L., Nix, R. L., Greenberg, M. T., & the Conduct Problems Prevention Research Group. (2010). Modeling the interplay of multilevel risk factors for future academic and behavior problems: A person-centered approach. Development and Psycholopathology, 22, 313–335.
Laska, M. N., Pasch, K. E., Lust, K., Story, M., & Ehlinger, E. (2009). Latent class analysis of lifestyle characteristics and health risk behaviors among college youth. Prevention Science, 10, 376–386.
Lazarsfeld, P. F., & Henry, N. W. (1968). Latent structure analysis. Boston, MA: Houghton Mifflin.
Loeber, R. (1990). Development and risk factors of juvenile antisocial behavior and delinquency. Clinical Psychology Review, 10, 1–41.
Luthar, S. S. (1993). Annotation: Methodological and conceptual issues in research on childhood resilience. Journal of Child Psychology and Psychiatry & Allied Disciplines, 34, 441–453.
MacKinnon, D. P. (2009). Introduction to statistical mediation analysis. New York: Lawrence Erlbaum Associates.
McLachlan, G., & Peel, D. (2000). Finite mixture models. New York: Wiley.
Muthén, L. K., & Muthén, B. O. (1998–2007). Mplus user’s guide (5th ed.). Los Angeles, CA: Authors.
Nylund, K. L., Asparouhov, T., & Muthén, B. O. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Structural Equation Modeling, 14, 535–569.
Ondersma, S. J., Winhusen, T., Erickson, S. J., Stine, S. M., & Wang, Y. (2009). Motivation enahancement therapy with pregnant substance-abusing women: Does baseline motivation moderate efficacy? Drug and Alcohol Dependence, 101, 74–79.
Oxford, M. L., Gilchrist, L. D., Morrison, D. M., Gillmore, M. R., Lohr, M. J., & Lewis, S. M. (2003). Alcohol use among adolescent mothers: Heterogeneity in growth curves, predictors, and outcomes of alcohol use over time. Prevention Science, 4, 15–26.
Rutter, M. (1979). Protective factors in children’s responses to stress and disadvantage. In M. W. Kent & J. E. Rolf (Eds.), Primary prevention of psychopathology: Vol 3. Social competence in children (pp. 49–74). Hanover, NH: University of New England Press.
Sameroff, A. J., Seifer, R., Baldwin, C. P., & Baldwin, A. (1993). Stability of intelligence from preschool to adolescence: The influence of social and family risk factors. Child Development, 64, 80–97.
Scheier, L. M., Abdallah, A. B., Inciardi, J. A., Copeland, J., & Cottler, L. B. (2008). Tri-city study of Ecstasy use problems: A latent class analysis. Drug and Alcohol Dependence, 98, 249–263.
Schochet, P. Z. (2008). Technical methods report: Guidelines for multiple testing in impact evaluations (NCEE 2008-4018). Washington, DC: National Center for Education Evaluation and Regional Assistance, Institute of Education Sciences, U.S. Department of Education.
Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461–464.
Sclove, S. L. (1987). Application of model-selection criteria to some problems in multivariate analysis. Psychometrika, 52, 333–343.
Shin, S. H., Hong, H. G., & Hazen, A. L. (2010). Childhood sexual abuse and adolescent substance use: A latent class analysis. Drug and Alcohol Dependence, 109, 226–235.
Syvertsen, A. K., Cleveland, M. J., Gayles, J. G., Tibbits, M. K., & Faulk, M. T. (2010). Profiles of protection from substance use among adolescents. Prevention Science, 11, 185–196.
Titterington, D., Smith, A., & Makov, U. (1985). Statistical analysis of finite mixture distributions. Chichester, UK: Wiley.
Van de Pol, F., Langeheine, R., & De Jong, W. (1996). User’s manual: A latent class program. The Netherlands: Voorburg.
Vermunt, J. K., & Magidson, J. (2005). Latent GOLD 4.0 user’s guide. Belmont, MA: Statistical Innovations Inc.
Von Eye, A., & Bergman, L. R. (2003). Research strategies in developmental psychopathology: Dimensional identity an the person-oriented approach. Development and Psychopathology, 15, 553–580.
Wang, C.-P., Brown, C. H., & Bandeen-Roche, K. (2005). Residual diagnostics for growth mixture models: Examining the impact of a preventive intervention on multiple trajectories of aggressive behavior. Journal of the American Statistical Association, 100, 1054–1076.
Author information
Authors and Affiliations
Corresponding author
Additional information
This study was supported by Award Numbers P50-DA010075 and R03-DA023032 from the National Institute on Drug Abuse. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute on Drug Abuse or the National Institutes of Health. The authors wish to thank John J. Dziak for helpful advice on the simulation of an outcome variable. This research uses data from Add Health, a program project directed by Kathleen Mullan Harris and designed by J. Richard Udry, Peter S. Bearman, and Kathleen Mullan Harris at the University of North Carolina at Chapel Hill, and funded by grant P01-HD31921 from the Eunice Kennedy Shriver National Institute of Child Health and Human Development, with cooperative funding from 23 other federal agencies and foundations. Special acknowledgment is due Ronald R. Rindfuss and Barbara Entwisle for assistance in the original design. Information on how to obtain the Add Health data files is available on the Add Health website (http://www.cpc.unc.edu/addhealth). No direct support was received from grant P01-HD31921 for this analysis.
Rights and permissions
About this article
Cite this article
Lanza, S.T., Rhoades, B.L. Latent Class Analysis: An Alternative Perspective on Subgroup Analysis in Prevention and Treatment. Prev Sci 14, 157–168 (2013). https://doi.org/10.1007/s11121-011-0201-1
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11121-011-0201-1