Skip to main content

Advertisement

Log in

Amelioration of plant responses to drought under elevated CO2 by rejuvenating photosynthesis and nitrogen use efficiency: implications for future climate-resilient crops

  • Original article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The contemporary global agriculture is beset with serious threats from diverse eco-environmental conditions causing decreases in crop yields by ~ 15%. These yield losses might increase further due to climate change scenarios leading to increased food prices triggering social unrest and famines. Urbanization and industrialization are often associated with rapid increases in greenhouse gases (GHGs) especially atmospheric CO2 concentration [(CO2)]. Increase in atmospheric [CO2] significantly improved crop photosynthesis and productivity initially which vary with plant species, genotype, [CO2] exposure time and biotic as well as abiotic stress factors. Numerous attempts have been made using different plant species to unravel the physiological, cellular and molecular effects of elevated [CO2] as well as drought. This review focuses on plant responses to elevated [CO2] and drought individually as well as in combination with special reference to physiology of photosynthesis including its acclimation. Furthermore, the functional role of nitrogen use efficiency (NUE) and its relation to photosynthetic acclimation and crop productivity under elevated [CO2] and drought are reviewed. In addition, we also discussed different strategies to ameliorate the limitations of ribulose-1,5-bisphosphate (RuBP) carboxylation and RuBP regeneration. Further, improved stomatal and mesophyll conductance and NUE for enhanced crop productivity under fast changing global climate conditions through biotechnological approaches are also discussed here. We conclude that multiple gene editing approaches for key events in photosynthetic processes would serve as the best strategy to generate resilient crop plants with improved productivity under fast changing climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AAP:

Amino acid permease

AlaAT:

Alanine aminotransferase

AQPs:

Aquaporins

ASN:

Aspartate synthase

ATP:

Adenosine triphosphate

CAO:

Chlorophyllide a oxygenase

CCM:

CO2 concentrating mechanism

CRISPR:

Clustered regularly interspaced palindromic repeats

DHAP:

Dihydroxyacetone phosphate

DS:

Drought susceptible

DT:

Drought tolerant

ECEs:

Extreme climatic events

FACE:

Free air CO2 enrichment

FBPase:

Fructose-1,6-bisphosphatase

G3P:

Glyceraldehyde 3-phosphate

GDH:

Glutamate dehydrogenase

GHGs:

Greenhouse gases

GS:

Glutamine synthetase

LHC:

Light-harvesting complex

MIPs:

Membrane intrinsic proteins

NR:

Nitrate reductase

NRT:

Nitrate transporter

NSCs:

Non-structural carbohydrates

NUE:

Nitrogen use efficiency

O3 :

Ozone

PGA:

Phasphoglyceric acid

PRK:

Phasphoribulokinase

PS:

Photosystem

RCs:

Reaction centers

RuBP:

Ribulose-1,5-bisphosphate

SBPase:

Sedoheptulose-1,7- bisphosphatase

T6P:

Trehalose -6-phosphate

TK:

Transketolase

WUE:

Water use efficiency

References

  • Abid M, Tian Z, Ata-Ul-Karim ST, Cui Y, Liu Y, Zahoor R, Jiang D, Dai T (2016) Nitrogen nutrition improves the potential of wheat (Triticum aestivum L.) to alleviate the effects of drought stress during vegetative growth periods. Front Plant Sci 7:98

    Article  Google Scholar 

  • Ainsworth EA, Beier C, Calfapietra C, Ceulemans R, DURAND-TARDIF MY, Farquhar GD, Godbold DL, Hendrey GR, Hickler T, Kaduk J, Karnosky DF (2008) Next generation of elevated [CO2] experiments with crops: a critical investment for feeding the future world. Plant Cell Environ 31:1317–1324

    Article  CAS  PubMed  Google Scholar 

  • Ainsworth EA, Long S (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–372

    Article  PubMed  Google Scholar 

  • Ainsworth EA, Rogers A, Nelson R, Long SP (2004) Testing the ‘source-sink’ hypothesis of down-regulation of photosynthesis in elevated [CO2] in the field with single gene substitutions in Glycine max. Agric For Meteorol 122:85–94

    Article  Google Scholar 

  • Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ 30:258–270

    Article  CAS  PubMed  Google Scholar 

  • Albert KR, Mikkelsen TN, Michelsen A, Ro-Poulsen H, Van der Linden L (2011a) Interactive effects of drought, elevated CO2 and warming on photosynthetic capacity and photosystem performance in temperate heath plants. J Plant Physiol 168:1550–1561

    Article  CAS  PubMed  Google Scholar 

  • Albert KR, Ro-Poulsen H, Mikkelsen TN, Michelsen A, Van der Linden L, Beier C (2011b) Interactive effects of elevated CO2, warming, and drought on photosynthesis of Deschampsia flexuosa in a temperate heath ecosystem. J Exp Bot 62:4253–4266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ameye M, Wertin TM, Bauweraerts I, McGuire MA, Teskey RO, Steppe K (2012) The effect of induced heat waves on Pinus taeda and Quercus rubra seedlings in ambient and elevated CO 2 atmospheres. New Phytol 196:448–461

    Article  PubMed  Google Scholar 

  • Bahuguna RN, Gupta P, Bagri J, Singh D, Dewi AK, Tao L, Islam M, Sarsu F, Singla-Pareek SL, Pareek A (2018) Forward and reverse genetics approaches for combined stress tolerance in rice. Indian J Plant Physiol 23:630–646

    Article  Google Scholar 

  • Bassham JA (2003) Mapping the carbon reduction cycle: a personal retrospective. Photosynth Res 76:35–52

    Article  PubMed  Google Scholar 

  • Bauweraerts I, Wertin TM, Ameye M, McGuire MA, Teskey RO, Steppe K (2013) The effect of heat waves, elevated [CO2] and low soil water availability on northern red oak (Quercus rubra L.) seedlings. Glob Change Biol 19:517–528

    Article  Google Scholar 

  • Benson AA (2002) Following the path of carbon in photosynthesis: a personal story. Photosynth Res 73:29–49

    Article  CAS  PubMed  Google Scholar 

  • Bernacchi CJ, VanLoocke A (2015) Terrestrial ecosystems in a changing environment: a dominant role for water. Annu Rev Plant Biol 66:599–622

    Article  CAS  PubMed  Google Scholar 

  • Bernacchi CJ, Kimball BA, Quarles DR, Long SP, Ort DR (2007) Decreases in stomatal conductance of soybean under open air elevation of [CO2] are closely coupled with decreases in ecosystem evapotranspiration. Plant Physiol 143:134–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Betti M, Bauwe H, Busch FA, Fernie AR, Keech O, Levey M, Ort DR, Parry MA, Sage R, Timm S, Walker B (2016) Manipulating photorespiration to increase plant productivity: recent advances and perspectives for crop improvement. J Exp Bot 67:2977–2988

    Article  CAS  PubMed  Google Scholar 

  • Biswal AK, Pattanayak GK, Pandey SS, Leelavathi S, Reddy VS, Tripathy BC (2012) Light intensity-dependent modulation of chlorophyll b biosynthesis and photosynthesis by overexpression of chlorophyllide a oxygenase in tobacco. Plant Physiol 159:433–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bobich EG, Barron-Gafford GA, Rascher KG, Murthy R (2010) Effects of drought and changes in vapour pressure deficit on water relations of Populus deltoides growing in ambient and elevated CO2. Tree Physiol 30:866–875

    Article  CAS  PubMed  Google Scholar 

  • Buchanan BB (2012) A conversation with Andrew Benson regarding the discovery of Calvin-Benson cycle. https://www.youtube.com/watch?v=GfQQJ2vR_xE&feature=youtu.be. Accessed 27 July 2012

  • Chavan SG, Duursma RA, Tausz M, Ghannoum O (2019) Elevated CO2 alleviates the negative impact of heat stress on wheat physiology but not on grain yield. J Exp Bot 70:6447–6459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen D, Wang S, Xiong B, Cao B, Deng X (2015) Carbon/nitrogen imbalance associated with drought-induced leaf senescence in Sorghum bicolor. PLoS ONE 10:8

    Google Scholar 

  • Chida H, Nakazawa A, Akazaki H, Hirano T, Suruga K, Ogawa M, Satoh T, Kadokura K, Yamada S, Hakamata W, Isobe K (2007) Expression of the algal cytochrome c 6 gene in Arabidopsis enhances photosynthesis and growth. Plant Cell Physiol 48:948–957

    Article  CAS  PubMed  Google Scholar 

  • Cramer WA, Hasan SS, Yamashita E (2011) The Q cycle of cytochrome bc complexes: a structure perspective. Biochim Biophys Acta Bioenergy 1807:788–802

    Article  CAS  Google Scholar 

  • DaMatta FM, Godoy AG, Menezes-Silva PE, Martins SC, Sanglard LM, Morais LE, Torre-Neto A, Ghini R (2016) Sustained enhancement of photosynthesis in coffee trees grown under free-air CO2 enrichment conditions: disentangling the contributions of stomatal, mesophyll, and biochemical limitations. J Exp Bot 67:341–352

    Article  CAS  PubMed  Google Scholar 

  • Davey PA, Olcer H, Zakhleniuk O, Bernacchi CJ, Calfapietra C, Long SP, Raines CA (2006) Can fast-growing plantation trees escape biochemical down-regulation of photosynthesis when grown throughout their complete production cycle in the open air under elevated carbon dioxide? Plant Cell Environ 29:1235–1244

    Article  CAS  PubMed  Google Scholar 

  • Dhankher OP, Foyer CH (2018) Climate resilient crops for improving global food security and safety. Plant Cell Environ 41:877–884

    Article  PubMed  Google Scholar 

  • Dias MC, Brüggemann W (2010) Limitations of photosynthesis in Phaseolus vulgaris under drought stress: gas exchange, chlorophyll fluorescence and Calvin cycle enzymes. Photosynthetica 48:96–102

    Article  CAS  Google Scholar 

  • Ding F, Wang M, Zhang S, Ai X (2016) Changes in SBPase activity influence photosynthetic capacity, growth, and tolerance to chilling stress in transgenic tomato plants. Sci Rep 6:32741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dresselhaus T, Huckelhoven R (eds) (2019) Biotic and abiotic stress responses in crop plants. MDPI, Basel

    Google Scholar 

  • Driever SM, Simkin AJ, Alotaibi S, Fisk SJ, Madgwick PJ, Sparks CA, Jones HD, Lawson T, Parry MAJ, Raines CA (2017) Increased SBPase activity improves photosynthesis and grain yield in wheat grown in greenhouse conditions. Philos Trans R Soc B 372:1730

    Article  CAS  Google Scholar 

  • Duan H, Duursma RA, Huang G, Smith RA, Choat B, O'Grady AP, Tissue DT (2014) Elevated [CO2] does not ameliorate the negative effects of elevated temperature on drought-induced mortality in Eucalyptus radiata seedlings. Plant Cell Environ 37:1598–1613

    Article  CAS  PubMed  Google Scholar 

  • Duursma RA, Barton CV, Eamus D, Medlyn BE, Ellsworth DS, Forster MA, Tissue DT, Linder S, McMurtrie RE (2011) Rooting depth explains [CO2] × drought interaction in Eucalyptus saligna. Tree Physiol 31:922–931

    Article  CAS  PubMed  Google Scholar 

  • Ellsworth DS, Thomas R, Crous KY, Palmroth S, Ward E, Maier C, DeLucia E, Oren R (2012) Elevated CO2 affects photosynthetic responses in canopy pine and subcanopy deciduous trees over 10 years: a synthesis from Duke FACE. Glob Change Biol 18:223–242

    Article  Google Scholar 

  • Evans JR (2013) Improving photosynthesis. Plant Physiol 162:1780–1793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, Ihsan MZ (2017) Crop production under drought and heat stress: plant responses and management options. Front Plant Sci 8:1147

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng LL, Han YJ, Liu G, An BG, Yang J, Yang GH, Li YS, Zhu YG (2007a) Overexpression ofsedoheptulose-1,7-bisphosphatase enhances photosynthesis and growth under salt stress in transgenic rice plants. Funct Plant Biol 34:822–834

    Article  CAS  PubMed  Google Scholar 

  • Feng LL, Wang K, Li Y, Tan YP, Kong J, Li H, Li YS, Zhu YG (2007b) Overexpression of SBPase enhances photosynthesis against high temperature stress in transgenic rice plants. Plant Cell Rep 26:1635–1646

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Barbour MM, Brendel O, Cabrera HM, Carriquí M, Díaz-Espejo A, Douthe C, Dreyer E, Ferrio JP, Gago J, Gallé A (2012) Mesophyll diffusion conductance to CO2: an unappreciated central player in photosynthesis. Plant Sci 193:70–84

    Article  PubMed  CAS  Google Scholar 

  • Flexas J, Niinemets Ü, Gallé A, Barbour MM, Centritto M, Diaz-Espejo A, Douthe C, Galmés J, Ribas-Carbo M, Rodriguez PL, Rosselló F (2013) Diffusional conductances to CO2 as a target for increasing photosynthesis and photosynthetic water-use efficiency. Photosynth Res 117:45–59

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Ribas-Carbo M, Diaz-Espejo A, Galmes J, Medrano H (2008) Mesophyll conductance to CO2: current knowledge and future prospects. Plant Cell Environ 31:602–612

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Ribas-Carbó M, Hanson DT, Bota J, Otto B, Cifre J, McDowell N, Medrano H, Kaldenhoff R (2006) Tobacco aquaporin NtAQP1 is involved in mesophyll conductance to CO2 in vivo. Plant J 48:427–439

    Article  CAS  PubMed  Google Scholar 

  • Food and Agriculture Organization of the United Nations (2017) The future of food and agriculture—Trends and challenges. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Franks PJ, Adams MA, Amthor JS, Barbour MM, Berry JA, Ellsworth DS, Farquhar GD, Ghannoum O, Lloyd J, McDowell N, Norby RJ (2013) Sensitivity of plants to changing atmospheric CO2 concentration: from the geological past to the next century. New Phytol 197:1077–1094

    Article  CAS  PubMed  Google Scholar 

  • Fukayama H, Mizumoto A, Ueguchi C, Katsunuma J, Morita R, Sasayama D, Hatanaka T, Azuma T (2018) Expression level of rubisco activase negatively correlates with rubisco content in transgenic rice. Photosynth Res 137:465–474

    Article  CAS  PubMed  Google Scholar 

  • Fukayama H, Ueguchi C, Nishikawa K, Katoh N, Ishikawa C, Masumoto C, Hatanaka T, Misoo S (2012) Overexpression of Rubisco activase decreases the photosynthetic CO2 assimilation rate by reducing Rubisco content in rice leaves. Plant Cell Physiol 53:976–986

    Article  CAS  PubMed  Google Scholar 

  • Gamage D, Thompson M, Sutherland M, Hirotsu N, Makino A, Seneweera S (2018) New insights into the cellular mechanisms of plant growth at elevated atmospheric carbon dioxide concentrations. Plant Cell Environ 41:1233–1246

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, de Bang TC, Schjoerring JK (2019) Cisgenic overexpression of cytosolic glutamine synthetase improves nitrogen utilization efficiency in barley and prevents grain protein decline under elevated CO2. Plant Biotechnol J 17:1209–1221

    Article  CAS  PubMed  Google Scholar 

  • Gillespie KM, Xu F, Richter KT, Mcgrath JM, Markelz RC, Ort DR, Leakey AD, Ainsworth EA (2012) Greater antioxidant and respiratory metabolism in field – grown soybean exposed to elevated O3 under both ambient and elevated CO2. Plant Cell Environ 35:169–184

    Article  CAS  PubMed  Google Scholar 

  • Girondé A, Etienne P, Trouverie J, Bouchereau A, Le Cahérec F, Leport L, Orsel M, Niogret MF, Nesi N, Carole D et al (2015) The contrasting N management of two oilseed rape genotypes reveals the mechanisms of proteolysis associated with leaf N remobilization and the respective contributions of leaves and stems to N storage and remobilization during seed filling. BMC Plant Biol 15:59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gray SB, Dermody O, Klein SP, Locke AM, McGrath JM, Paul RE, Rosenthal DM, Ruiz-Vera UM, Siebers MH, Strellner R, Ainsworth EA (2016) Intensifying drought eliminates the expected benefits of elevated carbon dioxide for soybean. Nat Plants 2:16132

    Article  CAS  PubMed  Google Scholar 

  • Guha A, Sengupta D, Reddy AR (2013) Polyphasic chlorophyll a fluorescence kinetics and leaf protein analyses to track dynamics of photosynthetic performance in mulberry during progressive drought. J Photochem Photobiol B 119:71–83

    Article  CAS  PubMed  Google Scholar 

  • Hanba YT, Shibasaka M, Hayashi Y, Hayakawa T, Kasamo K, Terashima I, Katsuhara M (2004) Overexpression of the barley aquaporin HvPIP2; 1 increases internal CO2 conductance and CO2 assimilation in the leaves of transgenic rice plants. Plant Cell Physiol 45:521–529

    Article  CAS  PubMed  Google Scholar 

  • Haworth M, Killi D, Materassi A, Raschi A, Centritto M (2016) Impaired stomatal control is associated with reduced photosynthetic physiology in crop species grown at elevated [CO2]. Front Plant Sci 25:1568

    Google Scholar 

  • Hay WT, Bihmidine S, Mutlu N, Le Hoang K, Awada T, Weeks DP, Clemente TE, Long SP (2017) Enhancing soybean photosynthetic CO2 assimilation using a cyanobacterial membrane protein, ictB. J Plant Physiol 212:58–68

    Article  CAS  PubMed  Google Scholar 

  • Heckwolf M, Pater D, Hanson DT, Kaldenhoff R (2011) The Arabidopsis thaliana aquaporin AtPIP1; 2 is a physiologically relevant CO2 transport facilitator. Plant J 67:795–804

    Article  CAS  PubMed  Google Scholar 

  • Henkes S, Sonnewald U, Badur R, Flachmann R, Stitt M (2001) A small decrease of plastid transketolase activity in antisense tobacco transformants has dramatic effects on photosynthesis and phenylpropanoid metabolism. Plant Cell 13:535–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu B, Wang W, Ou S, Tang J, Li H, Che R, Zhang Z, Chai X, Wang H, Wang Y, Liang C (2015) Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nat Genet 47:834

    Article  CAS  PubMed  Google Scholar 

  • Hu M, Zhao X, Liu Q, Hong X, Zhang W, Zhang Y, Sun L, Li H, Tong Y (2018) Transgenic expression of plastidic glutamine synthetase increases nitrogen uptake and yield in wheat. Plant Biotechnol J 16:1858–1867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunt L, Bailey KJ, Gray JE (2010) The signalling peptide EPFL9 is a positive regulator of stomatal development. New Phytol 186:609–614

    Article  CAS  PubMed  Google Scholar 

  • Ichikawa Y, Tamoi M, Sakuyama H, Maruta T, Ashida H, Yokota A, Shigeoka S (2010) Generation of transplastomic lettuce with enhanced growth and high yield. GM Crops 1:322–326

    Article  PubMed  Google Scholar 

  • IPCC (2019) Summary for Policymakers. In: Shukla PR, Skea J, Calvo Buendia E, Masson-Delmotte V, Pörtner HO, Roberts DC, Zhai P, Slade R, Connors S, Van Diemen R, Ferrat M (eds) Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems

  • Ishikawa C, Hatanaka T, Misoo S, Miyake C, Fukayama H (2011) Functional incorporation of sorghum small subunit increases the catalytic turnover rate of Rubisco in transgenic rice. Plant Physiol 156:1603–1611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • James D, Borphukan B, Fartyal D, Ram B, Singh J, Manna M, Sheri V, Panditi V, Yadav R, Achary VM, Reddy MK (2018) Concurrent overexpression of OsGS1;1 and OsGS2 genes in transgenic rice (Oryza sativa L.): impact on tolerance to Abiotic stresses. Front Plant Sci 9:786

    Article  PubMed  PubMed Central  Google Scholar 

  • Jin Z, Ainsworth EA, Leakey ADB, Lobell DB (2018) Increasing drought and diminishing benefits of elevated carbon dioxide for soybean yields across the US Midwest. Glob Change Biol 24:522–533

    Article  Google Scholar 

  • Kant S, Bi YM, Rothstein SJ (2011) Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency. J Exp Bot 62:1499–1509

    Article  CAS  PubMed  Google Scholar 

  • Kant S, Seneweera S, Rodin J, Materne M, Burch D, Rothstein SJ, Spangenberg G (2012) Improving yield potential in crops under elevated CO2: integrating the photosynthetic and nitrogen utilization efficiencies. Front Plant Sci 19:162

    Google Scholar 

  • Kebeish R, Niessen M, Thiruveedhi K et al (2007) Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana. Nat Biotechnol 25:593–599

    Article  CAS  PubMed  Google Scholar 

  • Khozaei M, Fisk S, Lawson T, Gibon Y, Sulpice R, Stitt M, Lefebvre SC, Raines CA (2015) Overexpression of plastid transketolase in tobacco results in a thiamine auxotrophic phenotype. Plant Cell 27:432–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimball BA (2016) Crop responses to elevated CO2 and interactions with H2O, N, and temperature. Curr Opin Plant Biol 31:36–43

    Article  CAS  PubMed  Google Scholar 

  • Kirschbaum MU (2011) Does enhanced photosynthesis enhance growth? Lessons learned from CO2 enrichment studies. Plant Physiol 155:117–124

    Article  CAS  PubMed  Google Scholar 

  • Kitao M, Lei TT, Koike T, Kayama M, Tobita H, Maruyama Y (2007) Interaction of drought and elevated CO2 concentration on photosynthetic down-regulation and susceptibility to photoinhibition in Japanese white birch seedlings grown with limited N availability. Tree Physiol 27:727–735

    Article  CAS  PubMed  Google Scholar 

  • Köhler IH, Ruiz-Vera UM, VanLoocke A, Thomey ML, Clemente T, Long SP, Ort DR, Bernacchi CJ (2017) Expression of cyanobacterial FBP/SBPase in soybean prevents yield depression under future climate conditions. J Exp Bot 68:715–726

    PubMed  Google Scholar 

  • Konishi N, Ishiyama K, Beier MP, Inoue E, Kanno K, Yamaya T, Takahashi H, Kojima S (2017) Contribution of two glutamine synthetase isozymes to ammonium assimilation in Arabidopsis roots. J Exp Bot 68:613–625

    CAS  PubMed  Google Scholar 

  • Kumar S, Chaitanya BS, Ghatty S, Reddy AR (2014) Growth, reproductive phenology and yield responses of a potential biofuel plant, Jatropha curcas grown under projected 2050 levels of elevated CO2. Physiol Plant 152:501–519

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Sreeharsha RV, Mudalkar S, Sarashetti PM, Reddy AR (2017) Molecular insights into photosynthesis and carbohydrate metabolism in Jatropha curcas grown under elevated CO2 using transcriptome sequencing and assembly. Sci Rep 7:1–5

    Article  CAS  Google Scholar 

  • Kurai T, Wakayama M, Abiko T, Yanagisawa S, Aoki N, Ohsugi R (2011) Introduction of the ZmDof1 gene into rice enhances carbon and nitrogen assimilation under low-nitrogen conditions. Plant Biotechnol J 9:826–837

    Article  CAS  PubMed  Google Scholar 

  • Langdale JA (2011) C4 cycles: past, present, and future research on C4 photosynthesis. Plant Cell 23:3879–3892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lastdrager J, Hanson J, Smeekens S (2014) Sugar signals and the control of plant growth and development. J Exp Bot 65:799–807

    Article  CAS  PubMed  Google Scholar 

  • Lawlor DW, Paul MJ (2014) Source/sink interactions underpin crop yield: the case for trehalose 6 - phosphate/SnRK1 in improvement of wheat. Front Plant Sci 5:418

    Article  PubMed  PubMed Central  Google Scholar 

  • Lawlor DW, Tezara W (2009) Causes of decreased photosynthetic rate and metabolic capacity in water deficient leaf cells: a critical evaluation of mechanisms and integration of processes. Ann Bot 103:561–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leakey AD, Ainsworth EA, Bernacchi CJ, Rogers A, Long SP, Ort DR (2009) Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J Exp Bot 60:2859–2876

    Article  CAS  PubMed  Google Scholar 

  • Leakey ADB (2009) Rising atmospheric carbon dioxide concentration and the future of C-4 crops for food and fuel. Philos Trans R Soc B 276:2333–2343

    CAS  Google Scholar 

  • Li H, Hu B, Chu C (2017) Nitrogen use efficiency in crops: lessons from Arabidopsis and rice. J Exp Bot 68:2477–2488

    Article  CAS  PubMed  Google Scholar 

  • Lieman-Hurwitz J, Rachmilevitch S, Mittler R, Marcus Y, Kaplan A (2003) Enhanced photosynthesis and growth of transgenic plants that express ictB, a gene involved in HCO3− accumulation in cyanobacteria. Plant Biotechnol J 1:43–50

    Article  CAS  PubMed  Google Scholar 

  • Lin MT, Occhialini A, Andralojc PJ, Parry MA, Hanson MR (2014) A faster Rubisco with potential to increase photosynthesis in crops. Nature 513:547–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop production since 1980. Science 333:616–620

    Article  CAS  PubMed  Google Scholar 

  • Long BM, Hee WY, Sharwood RE, Rae BD, Kaines S, Lim YL, Nguyen ND, Massey B, Bala S, von Caemmerer S, Badger MR, Price GD (2018) Carboxysome encapsulation of the CO2-fixing enzyme Rubisco in tobacco chloroplasts. Nat Commun 9:3570

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Long SP, Bernacchi CJ (2003) Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. J Exp Bot 54:2393–2401

    Article  CAS  PubMed  Google Scholar 

  • Long SP, Zhu XG, Naidu SL, Ort DR (2006) Can improvement in photosynthesis increase crop yields? Plant Cell Environ 29:315–330

    Article  CAS  PubMed  Google Scholar 

  • Markelz RC, Strellner RS, Leakey AD (2011) Impairment of C4 photosynthesis by drought is exacerbated by limiting nitrogen and ameliorated by elevated [CO2] in maize. J Exp Bot 62:3235–3246

    Article  CAS  PubMed  Google Scholar 

  • Masumoto C, Fukayama H, Hatanaka T, Uchida N (2012) Photosynthetic characteristics of antisense transgenic rice expressing reduced levels of RuBisCO activase. Plant Prod Sci 15:174–182

    Article  CAS  Google Scholar 

  • McAllister CH, Good AG (2015) Alanine aminotransferase variants conferring diverse NUE phenotypes in Arabidopsis thaliana. PLoS ONE 10:4

    Google Scholar 

  • McGrath JM, Long SP (2014) Can the cyanobacterial carbon-concentrating mechanism increase photosynthesis in crop species? A theoretical analysis. Plant Physiol 164:2247–2261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng F, Zhang J, Yao F, Hao C (2014) Interactive effects of elevated CO2 concentration and irrigation on photosynthetic parameters and yield of maize in northeast China. PLoS ONE 9:98318

    Article  CAS  Google Scholar 

  • Myers SS, Zanobetti A, Kloog I, Huybers P, Leakey AD, Bloom AJ, Carlisle E, Dietterich LH, Fitzgerald G, Hasegawa T, Holbrook NM (2014) Increasing CO2 threatens human nutrition. Nature 510:139–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • NASA (2020) Global Climate Change: Vital Signs of the Planet. https://climate.nasa.gov/413ppmquotes. Accessed 4 May 2020

  • Nonomura AM, Holtz B, Biel KY, Cooney R, Lorimer G, Govindjee G (2017) The paths of Andrew A. Benson:a radio-autobiography. Photosynth Res 134:93–105

    Article  CAS  PubMed  Google Scholar 

  • Norby RJ, Warren JM, Iversen CM, Medlyn BE, McMurtrie RE (2010) CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc Natl Acad Sci USA 107:19368–19373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nüsslein K, Dhankher OP (2016) Project management: food security needs social - science input. Nature 535:37–37

    Article  PubMed  CAS  Google Scholar 

  • Nutan KK, Rathore RS, Tripathi AK, Mishra M, Pareek A, Singla-Pareek SL (2020a) Integrating dynamics of yield traits in rice in response to environmental changes. J Exp Bot 7:490–506

    Article  CAS  Google Scholar 

  • Nutan KK, Singla-Pareek SL, Pareek A (2020b) The Saltol QTL-localized transcription factor OsGATA8 plays an important role in stress tolerance and seed development in Arabidopsis and rice. J Exp Bot 7:684–698

    Google Scholar 

  • Onoda Y, Hikosaka K, Hirose T (2005) Seasonal change in the balance between capacities of RuBP carboxylation and RuBP regeneration affects CO2 response of photosynthesis in Polygonum cuspidatum. J Exp Bot 56:755–763

    Article  CAS  PubMed  Google Scholar 

  • Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE, Bock R, Croce R, Hanson MR, Hibberd JM, Long SP, Moore TA (2015) Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc Natl Acad Sci USA 12:8529–8536

    Article  CAS  Google Scholar 

  • Ouyang W, Struik PC, Yin X, Yang J (2017) Stomatal conductance, mesophyll conductance, and transpiration efficiency in relation to leaf anatomy in rice and wheat genotypes under drought. J Exp Bot 68:5191–5205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan C, Ahammed GJ, Li X, Shi K (2018) Elevated CO2 improves photosynthesis under high temperature by attenuating the functional limitations to energy fluxes, electron transport and redox homeostasis in tomato leaves. Front Plant Sci 9:1739

    Article  PubMed  PubMed Central  Google Scholar 

  • Pareek A, Dhankher OP, Foyer CH (2020) Mitigating the impact of climate change on plant productivity and ecosystem sustainability. J Exp Bot 71:451–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parry MAJ, Andralojc PJ, Scales JC, Salvucci ME, Carmo-Silva E, Alonso H, Whitney SM (2013) Rubisco activity and regulation as targets for crop improvement. J Exp Bot 64:717–730

    Article  CAS  PubMed  Google Scholar 

  • Paul MJ, Oszvald M, Jesus C, Rajulu C, Griffiths CA (2017) Increasing crop yield and resilience with trehalose 6 - phosphate: targeting a feast – famine mechanism in cereals for better source – sink optimization. J Exp Bot 68:4455–4462

    Article  CAS  PubMed  Google Scholar 

  • Peña PA, Quach T, Sato S, Ge Z, Nersesian N, Changa T, Dweikat I, Soundararajan M, Clemente TE (2017) Expression of the maize Dof1 transcription factor in wheat and sorghum. Front Plant Sci 8:434

    Article  PubMed  PubMed Central  Google Scholar 

  • Perchlik M, Tegeder M (2017) Improving plant nitrogen use efficiency through alteration of amino acid transport processes. Plant Physiol 175:235–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perdomo JA, Capó-Bauçà S, Carmo-Silva E, Galmés J (2017) Rubisco and rubisco activase play an important role in the biochemical limitations of photosynthesis in rice, wheat, and maize under high temperature and water deficit. Front Plant Sci 13:490

    Google Scholar 

  • Perry LG, Shafroth PB, Blumenthal DM, Morgan JA, LeCain DR (2013) Elevated CO2 does not offset greater water stress predicted under climate change for native and exotic riparian plants. New Phytol 197:532–543

    Article  CAS  PubMed  Google Scholar 

  • Peterhansel C, Maurino VG (2011) Photorespiration redesigned. Plant Physiol 155:49–55

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro C, Chaves MM (2011) Photosynthesis and drought: can we make metabolic connections from available data? J Exp Bot 62:869–882

    Article  CAS  PubMed  Google Scholar 

  • Raines CA (2011) Increasing photosynthetic carbon assimilation in C3 plants to improve crop yield: current and future strategies. Plant Physiol 155:36–42

    Article  CAS  PubMed  Google Scholar 

  • Reddy AR, Rasineni GK, Ragavendra AS (2010) The impact of global elevated CO2 concentration on photosynthesis and plant productivity. Curr Sci 99:46–57

    CAS  Google Scholar 

  • Reddy KS, Sekhar KM, Reddy AR (2017) Genotypic variation in tolerance to drought stress is highly coordinated with hydraulic conductivity–photosynthesis interplay and aquaporin expression in field-grown mulberry (Morus spp.). Tree Physiol 37:926–937

    Article  CAS  PubMed  Google Scholar 

  • Reddy KS, Sekhar KM, Sreeharsha RV, Reddy AR (2019) Hydraulic dynamics and photosynthetic performance facilitate rapid screening of field grown mulberry (Morus spp.) genotypes for drought tolerance. Environ Exp Bot 157:320–330

    Article  Google Scholar 

  • ReynoldsM BonnettD, ChapmanSC FurbankRT, ManèsY MatherDE, Parry MAJ (2011) Raising yield potential of wheat. I. Overview of a consortium approach and breeding strategies. J Exp Bot 62:439–452

    Article  CAS  Google Scholar 

  • Ristic Z, Momcilovic I, Bukovnik U, Prasad PV, Fu J, Deridder BP, Elthon TE, Mladenov N (2009) RuBisCO activase and wheat productivity under heat-stress conditions. J Exp Bot 60:4003–4014

    Article  CAS  PubMed  Google Scholar 

  • Robredo A, Pérez-López U, de la Maza HS, González-Moro B, Lacuesta M, Mena-Petite A, Munoz-Rueda A (2007) Elevated CO2 alleviates the impact of drought on barley improving water status by lowering stomatal conductance and delaying its effects on photosynthesis. Environ Exp Bot 59:252–263

    Article  CAS  Google Scholar 

  • Robredo A, Pérez-López U, Miranda-Apodaca J, Lacuesta M, Mena-Petite A, Muñoz-Rueda A (2011) Elevated CO2 reduces the drought effect on nitrogen metabolism in barley plants during drought and subsequent recovery. Environ Exp Bot 71:399–408

    CAS  Google Scholar 

  • Rosenthal DM, Locke AM, Khozaei M, Raines CA, Long SP, Ort DR (2011) Over-expressing the C3 photosynthesis cycle enzyme sedoheptulose-1-7 bis-phosphatase improves photosynthetic carbon gain and yield under fully open-air CO2 fumigation (FACE). BMC Plant Biol 11:123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy J, Picon-Cochard C, Augusti A, Benot ML, Thiery L, Darsonville O, Landais D, Piel C, Defossez M, Devidal S, Escape C (2016) Elevated CO2 maintains grassland net carbon uptake under a future heat and drought extreme. Proc Natl Acad Sci USA 113:6224–6229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sage RF, Sage TL, Kocacinar F (2012) Photorespiration and the evolution of C4 photosynthesis. Annu Rev Plant Biol 63:19–47

    Article  CAS  PubMed  Google Scholar 

  • Sage RF, Zhu XG (2011) Exploiting the engine of C4 photosynthesis. J Exp Bot 62:2989–3000

    Article  CAS  PubMed  Google Scholar 

  • Sala A, Piper F, Hoch G (2010) Physiological mechanisms of drought induced tree mortality are far from being resolved. New Phytol 186:274–281

    Article  PubMed  Google Scholar 

  • Sekhar KM, Rachapudi VS, Mudulkar S, Reddy AR (2014) Persistent stimulation of photosynthesis in short rotation coppice mulberry under elevated CO2 atmosphere. J Photochem Photobiol B 137:21–30

    Article  CAS  Google Scholar 

  • Sekhar KM, Rachapudi VS, Reddy AR (2015) Differential responses in photosynthesis, growth and biomass yields in two mulberry genotypes grown under elevated CO2 atmosphere. J Photochem Photobiol B 151:172–179

    Article  CAS  PubMed  Google Scholar 

  • Sekhar KM, Reddy KS, Reddy AR (2017) Amelioration of drought-induced negative responses by elevated CO 2 in field grown short rotation coppice mulberry (Morus spp.), a potential bio-energy tree crop. Photosynth Res 132:151–164

    Article  CAS  PubMed  Google Scholar 

  • Seneweera S, Makino A, Hirotsu N, Norton R, Suzuki Y (2011) New insight into photosynthetic acclimation to elevated CO2: the role of leaf nitrogen and ribulose - 1, 5 - bisphosphate carboxylase/oxygenase content in rice leaves. Environ Exp Bot 71:128–136

    Article  CAS  Google Scholar 

  • Sharkey TD (2019) Discovery of the canonical Calvin-Benson cycle. Photosynth Res 140:235–252

    Article  CAS  PubMed  Google Scholar 

  • Sharkey TD, Bernacchi CJ, Farquhar GD, Singsaas EL (2007) Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant Cell Environ 30:1035–1040

    Article  CAS  PubMed  Google Scholar 

  • Sharpe RM, Offermann S (2014) One decade after the discovery of single-cell C 4 species in terrestrial plants: what did we learn about the minimal requirements of C 4 photosynthesis? Photosynth Res 119:169–180

    Article  CAS  PubMed  Google Scholar 

  • Sheehy JE, Mitchell PL, Hardy B (eds) (2007) Charting new pathways to C4 rice. International Rice Research Institute, Los Banos

    Google Scholar 

  • Sholtis JD, Gunderson CA, Norby RJ, Tissue DT (2004) Persistent stimulation of photosynthesis by elevated CO2 in a sweetgum (Liquidambar styraciflua) forest stand. New Phytol 162:343–354

    Article  Google Scholar 

  • Shrawat AK, Carroll RT, DePauw M, Taylor GJ, Good AG (2008) Genetic engineering of improved nitrogen use efficiency in rice by the tissue-specific expression of alanine aminotransferase. Plant Biotechnol J 6:722–732

    Article  CAS  PubMed  Google Scholar 

  • Simkin AJ, López-Calcagno PE, Raines CA (2019) Feeding the world: improving photosynthetic efficiency for sustainable crop production. J Exp Bot 70:1119–1140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simkin AJ, McAusland L, Lawson T, Raines CA (2017a) Overexpression of the RieskeFeS protein increases electron transport rates and biomass yield. Plant Physiol 175:134–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simkin AJ, Lopez-Calcagno PE, Davey PA, Headland LR, Lawson T, Timm S, Bauwe H, Raines CA (2017b) Simultaneous stimulation of sedoheptulose 1,7-bisphosphatase, fructose 1,6-bisphophate aldolase and the photorespiratory glycine decarboxylase-H protein increases CO2 assimilation, vegetative biomass and seed yield in Arabidopsis. Plant Biotechnol J 15:805–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simkin AJ, McAusland L, Headland LR, Lawson T, Raines CA (2015) Multigene manipulation of photosynthetic carbon assimilation increases CO2 fixation and biomass yield in tobacco. J Exp Bot 66:4075–4090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh J, Pandey P, James D, Chandrasekhar K, Achary VM, Kaul T, Tripathy BC, Reddy MK (2014) Enhancing C3 photosynthesis: an outlook on feasible interventions for crop improvement. Plant Biotechnol J 12:1217–1230

    Article  CAS  PubMed  Google Scholar 

  • Smeekens S, Ma J, Hanson J, Rolland F (2010) Sugar signals and molecular networks controlling plant growth. Curr Opin Plant Biol 13:273–278

    Article  CAS  Google Scholar 

  • Song J, Wang Y, Pan Y, Pang J, Zhang X, Fan J, Zhang Y (2019) The influence of nitrogen availability on anatomical and physiological responses of Populus alba × P. glandulosa to drought stress. BMC Plant Biol 19:63

    Article  PubMed  PubMed Central  Google Scholar 

  • Sreeharsha RV, Mudalkar S, Sengupta D, Unnikrishnan DK, Reddy AR (2019) Mitigation of drought-induced oxidative damage by enhanced carbon assimilation and an efficient antioxidative metabolism under high CO 2 environment in pigeonpea (Cajanus cajan L.). Photosynth Res 139:425–439

    Article  CAS  PubMed  Google Scholar 

  • Sreeharsha RV, Sekhar KM, Reddy AR (2015) Delayed flowering is associated with lack of photosynthetic acclimation in Pigeon pea (Cajanus cajan L.) grown under elevated CO2. Plant Sci 231:82–93

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Gu L, Dickinson RE, Pallardy SG, Baker J, Cao Y, DaMatta FM, Dong X, Ellsworth D, Van Goethem D, Jensen AM (2014) Asymmetrical effects of mesophyll conductance on fundamental photosynthetic parameters and their relationships estimated from leaf gas exchange measurements. Plant Cell Environ 37:978–994

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y, Nakabayashi K, Yoshizawa R, Mae T, Makino A (2009) Differences in expression of the RBCS multigene family and Rubisco protein content in various rice plant tissues at different growth stages. Plant Cell Physiol 50:1851–1855

    Article  CAS  PubMed  Google Scholar 

  • Suzuki Y, Ohkubo M, Hatakeyama H, Ohashi K, Yoshizawa R, Kojima S, Hayakawa T, Yamaya T, Mae T, Makino A (2007) Increased Rubisco content in transgenic rice transformed with the ‘sense’rbcS gene. Plant Cell Physiol 48:626–637

    Article  CAS  PubMed  Google Scholar 

  • Tabuchi M, Sugiyama K, Ishiyama K, Inoue E, Sato T, Takahashi H, Yamaya T (2005) Severe reduction in growth rate and grain filling of rice mutants lacking OsGS1; 1, a cytosolic glutamine synthetase1; 1. Plant J 42:641–651

    Article  CAS  PubMed  Google Scholar 

  • Takatani N, Ito T, Kiba T, Mori M, Miyamoto T, Maeda SI, Omata T (2014) Effects of high CO 2 on growth and metabolism of Arabidopsis seedlings during growth with a constantly limited supply of nitrogen. Plant Cell Physiol 55:281–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamoi M, Nagaoka M, Miyagawa Y, Shigeoka S (2006) Contribution of fructose-1,6-bisphosphatase and sedoheptulose-1,7-bisphosphatase to the photosynthetic rate and carbon flow in the Calvin cycle in transgenic plants. Plant Cell Physiol 47:380–390

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Sugano SS, Shimada T, Hara-Nishimura I (2013) Enhancement of leaf photosynthetic capacity through increased stomatal density in Arabidopsis. New Phytol 198:757–764

    Article  CAS  PubMed  Google Scholar 

  • Taub DR, Miller B, Allen H (2008) Effects of elevated CO2 on the protein concentration of food crops: a meta-analysis. Glob Change Biol 14:565–575

    Article  Google Scholar 

  • Tausz-Posch S, Tausz M, Bourgault M (2020) Elevated [CO2] effects on crops: advances in understanding acclimation, nitrogen dynamics and interactions with drought and other organisms. Plant Biol 22:38–51

    Article  CAS  PubMed  Google Scholar 

  • Tikhonov AN (2014) The cytochrome b6f complex at the crossroad of photosynthetic electron transport pathways. Plant Physiol Biochem 81:163–183

    Article  CAS  PubMed  Google Scholar 

  • Uddling J, Teclaw RM, Pregitzer KS, Ellsworth DS (2009) Leaf and canopy conductance in aspen and aspen-birch forests under free-air enrichment of carbon dioxide and ozone. Tree Physiol 29:1367–1380

    Article  CAS  PubMed  Google Scholar 

  • Uehlein N, Lovisolo C, Siefritz F, Kaldenhoff R (2003) The tobacco aquaporin NtAQP1 is a membrane CO 2 pore with physiological functions. Nature 425:734–737

    Article  CAS  PubMed  Google Scholar 

  • Uematsu K, Suzuki N, Iwamae T, Inui M, Yukawa H (2012) Increased fructose 1,6-bisphosphate aldolase in plastids enhances growth and photosynthesis of tobacco plants. J Exp Bot 63:3001–3009

    Article  CAS  PubMed  Google Scholar 

  • Vicente R, Pérez P, Martínez-Carrasco R, Usadel B, Kostadinova S, Morcuende R (2015) Quantitative RT – PCR platform to measure transcript levels of C and N metabolism - related genes in durum wheat: transcript profiles in elevated [CO2] and high temperature at different levels of N supply. Plant Cell Physiol 56:1556–1573

    Article  CAS  PubMed  Google Scholar 

  • von Caemmerer S, Furbank RT (2003) The C4 pathway: an efficient CO2 pump. Photosynth Res 77:191–207

    Article  Google Scholar 

  • von Caemmerer S, Evans JR (2010) Enhancing C3 photosynthesis. Plant Physiol 154:589–592

    Article  CAS  Google Scholar 

  • von Caemmerer S, Quick WP, Furbank RT (2012) The development of C4 rice: current progress and future challenges. Science 336:1671–1672

    Article  CAS  Google Scholar 

  • Walker BJ, Van Loocke A, Bernacchi CJ, Ort DR (2016) The cost of photorespiration to food production now and in the future. Annu Rev Plant Biol 67:107–129

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Hu B, Yuan D, Liu Y, Che R, Hu Y, Ou S, Liu Y, Zhang Z, Wang H, Li H (2018) Expression of the nitrate transporter gene OsNRT1.1A/OsNPF6.3 confers high yield and early maturation in rice. Plant Cell 30:638–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward EJ, Oren R, Bell DM, Clark JS, McCarthy HR, Kim HS, Domec JC (2013) The effects of elevated CO2 and nitrogen fertilization on stomatal conductance estimated from 11 years of scaled sap flux measurements at Duke FACE. Tree Physiol 33:135–151

    Article  CAS  PubMed  Google Scholar 

  • Warren JM, Norby RJ, Wullschleger SD (2011) Elevated CO2 enhances leaf senescence during extreme drought in a temperate forest. Tree Physiol 31:117–130

    Article  PubMed  Google Scholar 

  • White AC, Rogers A, Rees M, Osborne CP (2015) How can we make plants grow faster? A source – sink perspective on growth rate. J Exp Bot 67:31–45

    Article  PubMed  CAS  Google Scholar 

  • Whitney SM, Houtz R, Alonso H (2011a) Advancing our understanding and capacity to engineer nature’s CO2-sequestering enzyme, Rubisco. Plant Physiol 155:27–35

    Article  CAS  PubMed  Google Scholar 

  • Whitney SM, Sharwood RE, Orr D, White SJ, Alonso H, Galmés J (2011b) Isoleucine 309 acts as a C4 catalytic switch that increases ribulose1,5-bisphosphate carboxylase/oxygenase (rubisco) carboxylation rate in Flaveria. Proc Natl Acad Sci USA 108:14688–14693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong D, Yu T, Liu X, Li Y, Peng S, Huang J (2015) Heterogeneity of photosynthesis within leaves is associated with alteration of leaf structural features and leaf N content per leaf area in rice. Funct Plant Biol 42:687–696

    Article  CAS  PubMed  Google Scholar 

  • Xu F, Wang K, Yuan W, Xu W, Liu S, Kronzucker HJ, Chen G, Miao R, Zhang M, Ding M, Xiao L (2019) Overexpression of rice aquaporin OsPIP1; 2 improves yield by enhancing mesophyll CO2 conductance and phloem sucrose transport. J Exp Bot 70:671–681

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Jiang Y, Jia B, Zhou G (2016) Elevated-CO2 response of stomata and its dependence on environmental factors. Front Plant Sci 7:657

    PubMed  PubMed Central  Google Scholar 

  • Xu Z, Jiang Y, Zhou G (2015) Response and adaptation of photosynthesis, respiration, and antioxidant systems to elevated CO2 with environmental stress in plants. Front Plant Sci 6:701

    PubMed  PubMed Central  Google Scholar 

  • Yadav SK, Khatri K, Rathore MS, Jha B (2018) Introgression of UfCyt c 6, a thylakoid lumen protein from a green seaweed Ulva fasciata Delile enhanced photosynthesis and growth in tobacco. Mol Biol Rep 45:1745–1758

    Article  CAS  PubMed  Google Scholar 

  • Yamori W, Takahashi S, Makino A, Price GD, Badger MR, von Caemmerer S (2011) The roles of ATP synthase and the cytochrome b6/f complexes in limiting chloroplast electron transport and determining photosynthetic capacity. Plant Physiol 155:956–962

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Guo J, Wang G, Yang L, Yang Y (2012) Effects of drought and nitrogen addition on photosynthetic characteristics and resource allocation of Abies fabri seedlings in eastern Tibetan Plateau. New For 43:505–518

    Article  Google Scholar 

  • Yin Z, Zhang Z, Deng D, Chao M, Gao Q, Wang Y, Yang Z, Bian Y, Hao D, Xu C (2014) Characterization of RuBisCO activase genes in maize: an alpha-isoform gene functions alongside a beta-isoform gene. Plant Physiol 164:2096–2106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu H, Murchie EH, González-Carranza ZH, Pyke KA, Roberts JA (2015) Decreased photosynthesis in the erect panicle 3 (ep3) mutant of rice is associated with reduced stomatal conductance and attenuated guard cell development. J Exp Bot 66:1543–1552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zafar SA, Zaidi SS, Gaba Y, Singla-Pareek SN, Parkash Dhankher O, Li X, Mansoor S, Pareek A (2020) Engineering abiotic stress tolerance via CRISPR-Cas mediated genome editing. J Exp Bot 71:470–479

    Article  CAS  PubMed  Google Scholar 

  • Zeppel MJ, Lewis JD, Chaszar B, Smith RA, Medlyn BE, Huxman TE, Tissue DT (2012) Nocturnal stomatal conductance responses to rising [CO2], temperature and drought. New Phytol 193:929–938

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Li F, Hao L, Yu J, Guo L, Zhou H, Ma C, Zhang X, Xu M (2019) Elevated CO2 concentration induces photosynthetic down-regulation with changes in leaf structure, non-structural carbohydrates and nitrogen content of soybean. BMC Plant Biol 19:255

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhong C, Cao X, Hu J, Zhu L, Zhang J, Huang J, Jin Q (2017) Nitrogen metabolism in adaptation of photosynthesis to water stress in rice grown under different nitrogen levels. Front Plant Sci 8:1079

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu S, Vivanco JM, Manter DK (2016) Nitrogen fertilizer rate affects root exudation, the rhizosphere microbiome and nitrogen-use-efficiency of maize. Appl Soil Ecol 107:324–333

    Article  Google Scholar 

  • Zinta G, AbdElgawad H, Domagalska MA, Vergauwen L, Knapen D, Nijs I, Janssens IA, Beemster GT, Asard H (2014) Physiological, biochemical, and genome wide transcriptional analysis reveals that elevated CO2 mitigates the impact of combined heat wave and drought stress in Arabidopsis thaliana at multiple organizational levels. Glob Change Biol 20:3670–3685

    Article  Google Scholar 

  • Zong YZ, Shangguan ZP (2014) Nitrogen deficiency limited the improvement of photosynthesis in Maize by elevated CO2 under drought. J Integr Agr 13:73–81

    Article  CAS  Google Scholar 

Download references

Acknowledgements

K.M. Sekhar is grateful to DSKPDF scheme, UGC, New Delhi, India for fellowship (BL/17-18/0304). K.V. R is thankful to National Academy of Sciences, India (NASI) for the award of Senior Scientist Platinum Jubilee Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Attipalli Ramachandra Reddy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sekhar, K.M., Kota, V.R., Reddy, T.P. et al. Amelioration of plant responses to drought under elevated CO2 by rejuvenating photosynthesis and nitrogen use efficiency: implications for future climate-resilient crops. Photosynth Res 150, 21–40 (2021). https://doi.org/10.1007/s11120-020-00772-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-020-00772-5

Keywords

Navigation