Skip to main content
Log in

Phycobilisome: architecture of a light-harvesting supercomplex

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The phycobilisome (PBS) is an extra-membrane supramolecular complex composed of many chromophore (bilin)-binding proteins (phycobiliproteins) and linker proteins, which generally are colorless. PBS collects light energy of a wide range of wavelengths, funnels it to the central core, and then transfers it to photosystems. Although phycobiliproteins are evolutionarily related to each other, the binding of different bilin pigments ensures the ability to collect energy over a wide range of wavelengths. Spatial arrangement and functional tuning of the different phycobiliproteins, which are mediated primarily by linker proteins, yield PBS that is efficient and versatile light-harvesting systems. In this review, we discuss the functional and spatial tuning of phycobiliproteins with a focus on linker proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AP:

Allophycocyanin

PBP:

Phycobiliprotein

PBS:

Phycobilisome

PC:

Phycocyanin

PCB:

Phycocyanobilin

PE:

Phycoerythrin

PEB:

Phycoerythrobilin

PEC:

Phycoerythrocyanin

PUB:

Phycourobilin

PVB:

Phycoviolobilin

References

  • Adir N (2005) Elucidation of the molecular structures of components of the phycobilisome: reconstructing a giant. Photosynth Res 85:15–32

    Article  PubMed  CAS  Google Scholar 

  • Ajlani G, Vernotte C (1998) Deletion of the PB-loop in the L(CM) subunit does not affect phycobilisome assembly or energy transfer functions in the cyanobacterium Synechocystis sp. PCC6714. Eur J Biochem 257:154–159

    Article  PubMed  CAS  Google Scholar 

  • Apt KE, Hoffman NE, Grossman AR (1993) The gamma subunit of R-phycoerythrin and its possible mode of transport into the plastid of red algae. J Biol Chem 268:16208–16215

    PubMed  CAS  Google Scholar 

  • Apt KE, Collier JL, Grossman AR (1995) Evolution of the phycobiliproteins. J Mol Biol 248:79–96

    Article  PubMed  CAS  Google Scholar 

  • Arteni AA, Liu LN, Aartsma TJ, Zhang YZ, Zhou BC, Boekema EJ (2008) Structure and organization of phycobilisomes on membranes of the red alga Porphyridium cruentum. Photosynth Res 95:169–174

    Article  PubMed  CAS  Google Scholar 

  • Arteni AA, Ajlani G, Boekema EJ (2009) Structural organisation of phycobilisomes from Synechocystis sp. strain PCC6803 and their interaction with the membrane. Biochim Biophys Acta 1787:272–279

    Article  PubMed  CAS  Google Scholar 

  • Barber J, Morris EP, da Fonseca PC (2003) Interaction of the allophycocyanin core complex with photosystem II. Photochem Photobiol Sci 2:536–541

    Article  PubMed  CAS  Google Scholar 

  • Blot N, Wu XJ, Thomas JC, Zhang J, Garczarek L, Bohm S, Tu JM, Zhou M, Ploscher M, Eichacker L, Partensky F, Scheer H, Zhao KH (2009) Phycourobilin in trichromatic phycocyanin from oceanic cyanobacteria is formed post-translationally by a phycoerythrobilin lyase-isomerase. J Biol Chem 284:9290–9298

    Article  PubMed  CAS  Google Scholar 

  • Brejc K, Ficner R, Huber R, Steinbacher S (1995) Isolation, crystallization, crystal structure analysis and refinement of allophycocyanin from the cyanobacterium Spirulina platensis at 2.3 Å resolution. J Mol Biol 249:424–440

    Article  PubMed  CAS  Google Scholar 

  • Bryant DA (1991) Cyanobacterial phycobilisomes: progress toward complete structural and functional analysis via molecular genetics. In: Bogorad L (ed) Cell culture and somatic cell genetics of plants, vol 5B. Department of Molecular and Cell Biology, Pennsylvania, pp 255–298

    Google Scholar 

  • Bryant DA, Stirewalt VL, Glauser M, Frank G, Sidler W, Zuber H (1991) A small multigene family encodes the rod-core linker polypeptides of Anabaena sp. PCC7120 phycobilisomes. Genetics 107:91–99

    CAS  Google Scholar 

  • Chen M, Bibby TS (2005) Photosynthetic apparatus of antenna-reaction centres supercomplexes in oxyphotobacteria: insight through significance of Pcb/IsiA proteins. Photosynth Res 86:165–173

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Bibby TS, Nield J, Larkum AW, Barber J (2005) Structure of a large photosystem II supercomplex from Acaryochloris marina. FEBS Lett 579:1306–1310

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Floetenmeyer M, Bibby TS (2009) Supramolecular organization of phycobiliproteins in the chlorophyll d-containing cyanobacterium Acaryochloris marina. FEBS Lett 583:2535–2539

    Article  PubMed  CAS  Google Scholar 

  • David L, Marx A, Adir N (2011) High-resolution crystal structures of trimeric and rod phycocyanin. J Mol Biol 405:201–213

    Article  PubMed  CAS  Google Scholar 

  • de Lorimier R, Guglielmi G, Bryant DA, Stevens SE Jr (1990) Structure and mutation of a gene encoding a Mr 33,000 phycocyanin-associated linker polypeptide. Arch Microbiol 153:541–549

    Article  PubMed  Google Scholar 

  • Ducret A, Sidler W, Wehrli E, Frank G, Zuber H (1996) Isolation, characterization and electron microscopy analysis of a hemidiscoidal phycobilisome type from the cyanobacterium Anabaena sp. PCC 7120. Eur J Biochem 236:1010–1024

    Article  PubMed  CAS  Google Scholar 

  • Ducret A, Muller SA, Goldie KN, Hefti A, Sidler WA, Zuber H, Engel A (1998) Reconstitution, characterisation and mass analysis of the pentacylindrical allophycocyanin core complex from the cyanobacterium Anabaena sp. PCC 7120. J Mol Biol 278:369–388

    Article  PubMed  CAS  Google Scholar 

  • Everroad C, Six C, Partensky F, Thomas JC, Holtzendorff J, Wood AM (2006) Biochemical bases of type IV chromatic adaptation in marine Synechococcus spp. J Bacteriol 188:3345–3356

    Article  PubMed  CAS  Google Scholar 

  • Ficner R, Huber R (1993) Refined crystal structure of phycoerythrin from Porphyridium cruentum at 0.23 nm resolution and localization of the gamma-subunit. Eur J Biochem 218:103–106

    Article  PubMed  CAS  Google Scholar 

  • Ficner R, Lobeck K, Schmidt G, Huber R (1992) Isolation, crystallization, crystal structure analysis and refinement of B-phycoerythrin from the red alga Porphyridium sordidum at 2.2 Å resolution. J Mol Biol 228:935–950

    Article  PubMed  CAS  Google Scholar 

  • Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, Holm L, Sonnhammer EL, Eddy SR, Bateman A (2010) The Pfam protein families database. Nucleic Acids Res 38:D211–D222

    Article  PubMed  CAS  Google Scholar 

  • Gao X, Zhang N, Wei TD, Su HN, Xie BB, Dong CC, Zhang XY, Chen XL, Zhou BC, Wang ZX, Wu JW, Zhang YZ (2011) Crystal structure of the N-terminal domain of linker L(R) and the assembly of cyanobacterial phycobilisome rods. Mol Microbiol 82:698–705

    Article  PubMed  CAS  Google Scholar 

  • Gao X, Wei TD, Zhang N, Xie BB, Su HN, Zhang XY, Chen XL, Zhou BC, Wang ZX, Wu JW, Zhang YZ (2012) Molecular insights into the terminal energy acceptor in cyanobacterial phycobilisome. Mol Microbiol 85:907–915

    Article  PubMed  CAS  Google Scholar 

  • Glauser M, Bryant DA, Frank G, Wehrli E, Rusconi SS, Sidler W, Zuber H (1992) Phycobilisome structure in the cyanobacteria Mastigocladus laminosus and Anabaena sp. PCC 7120. Eur J Biochem 205:907–915

    Article  PubMed  CAS  Google Scholar 

  • Glazer AN, Hixson CS (1977) Subunit structure and chromophore composition of rhodophytan phycoerythrins. Porphyridium cruentum B-phycoerythrin and b-phycoerythrin. J Biol Chem 252:32–42

    PubMed  CAS  Google Scholar 

  • Grossman AR, Schaefer MR, Chiang GG, Collier JL (1993) The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiol Rev 57:725–749

    PubMed  CAS  Google Scholar 

  • Guglielmi G, Cohen-Bazire G, Bryant DA (1981) The structure of Gloeobacter violaceus and its phycobilisomes. Arch Microbiol 129:181–189

    Article  CAS  Google Scholar 

  • Iwai M, Katoh H, Katayama M, Ikeuchi M (2004) PSII-Tc protein plays an important role in dimerization of photosystem II. Plant Cell Physiol 45:1809–1816

    Article  PubMed  CAS  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauss N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411:909–917

    Article  PubMed  CAS  Google Scholar 

  • Kawakami K, Umena Y, Iwai M, Kawabata Y, Ikeuchi M, Kamiya N, Shen JR (2011) Roles of PsbI and PsbM in photosystem II dimer formation and stability studied by deletion mutagenesis and X-ray crystallography. Biochim Biophys Acta 1807:319–325

    Article  PubMed  CAS  Google Scholar 

  • Kirilovsky D (2007) Photoprotection in cyanobacteria: the orange carotenoid protein (OCP)-related non-photochemical-quenching mechanism. Photosynth Res 93:7–16

    Article  PubMed  CAS  Google Scholar 

  • Kirilovsky D, Kerfeld CA (2012) The orange carotenoid protein in photoprotection of photosystem II in cyanobacteria. Biochim Biophys Acta 1817:158–166

    Article  PubMed  CAS  Google Scholar 

  • Klotz AV, Glazer AN (1985) Characterization of the bilin attachment sites in R-phycoerythrin. J Biol Chem 260:4856–4863

    PubMed  CAS  Google Scholar 

  • Kobayashi M, Okada K, Ikeuchi M (2005) A suppressor mutation in the alpha-phycocyanin gene in the light/glucose-sensitive phenotype of the psbK-disruptant of the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol 46:1561–1567

    Article  PubMed  CAS  Google Scholar 

  • Kondo K, Geng XX, Katayama M, Ikeuchi M (2005) Distinct roles of CpcG1 and CpcG2 in phycobilisome assembly in the cyanobacterium Synechocystis sp. PCC 6803. Photosynth Res 84:269–273

    Article  PubMed  CAS  Google Scholar 

  • Kondo K, Ochiai Y, Katayama M, Ikeuchi M (2007) The membrane-associated CpcG2-phycobilisome in Synechocystis: a new photosystem I antenna. Plant Physiol 144:1200–1210

    Article  PubMed  CAS  Google Scholar 

  • Koyama K, Tsuchiya T, Akimoto S, Yokono M, Miyashita H, Mimuro M (2006) New linker proteins in phycobilisomes isolated from the cyanobacterium Gloeobacter violaceus PCC 7421. FEBS Lett 580:3457–3461

    Article  PubMed  CAS  Google Scholar 

  • Kura-Hotta M, Satoh K, Katoh S (1986) Functional linkage between phycobilisome and reaction center in two phycobilisome oxygen-evolving photosystem II preparations isolated from the thermophilic cyanobacterium Synechococcus sp. Arch Biochem Biophys 249:1–7

    Article  PubMed  CAS  Google Scholar 

  • Li H, Sherman LA (2002) Characterization of Synechocystis sp. strain PCC 6803 and delta nbl mutants under nitrogen-deficient conditions. Arch Microbiol 178:256–266

    Article  PubMed  CAS  Google Scholar 

  • Liu LN, Chen XL, Zhang YZ, Zhou BC (2005) Characterization, structure and function of linker polypeptides in phycobilisomes of cyanobacteria and red algae: an overview. Biochim Biophys Acta 1708:133–142

    Article  PubMed  CAS  Google Scholar 

  • MacColl R (1998) Cyanobacterial phycobilisomes. J Struct Biol 124:311–334

    Article  PubMed  CAS  Google Scholar 

  • MacColl R (2004) Allophycocyanin and energy transfer. Biochim Biophys Acta 1657:73–81

    Article  PubMed  CAS  Google Scholar 

  • Marquardt J, Senger H, Miyashita H, Miyachi S, Morschel E (1997) Isolation and characterization of biliprotein aggregates from Acaryochloris marina, a Prochloron-like prokaryote containing mainly chlorophyll d. FEBS Lett 410:428–432

    Article  PubMed  CAS  Google Scholar 

  • Mullineaux CW (2008) Phycobilisome-reaction centre interaction in cyanobacteria. Photosynth Res 95:175–182

    Article  PubMed  CAS  Google Scholar 

  • Mullineaux CW, Emlyn-Jones D (2005) State transitions: an example of acclimation to low-light stress. J Exp Bot 56:389–393

    Article  PubMed  CAS  Google Scholar 

  • Parbel A, Scheer H (2000) Model for the phycobilisome rod with interlocking disks based on domain-weighted linker-polypeptide sequence homologies of Mastigocladus laminosus. Int J Photoenergy 2:31–40

    Article  CAS  Google Scholar 

  • Pizarro SA, Sauer K (2001) Spectroscopic study of the light-harvesting protein C-phycocyanin associated with colorless linker peptides. Photochem Photobiol 73:556–563

    Article  PubMed  CAS  Google Scholar 

  • Reuter W, Wiegand G, Huber R, Than ME (1999) Structural analysis at 2.2 Å of orthorhombic crystals presents the asymmetry of the allophycocyanin-linker complex, AP·LC 7.8, from phycobilisomes of Mastigocladus laminosus. Proc Natl Acad Sci USA 96:1363–1368

    Article  PubMed  CAS  Google Scholar 

  • Ritter S, Hiller RG, Wrench PM, Welte W, Diederichs K (1999) Crystal structure of a phycourobilin-containing phycoerythrin at 1.90-Å resolution. J Struct Biol 126:86–97

    Article  PubMed  CAS  Google Scholar 

  • Scanlan DJ, Ostrowski M, Mazard S, Dufresne A, Garczarek L, Hess WR, Post AF, Hagemann M, Paulsen I, Partensky F (2009) Ecological genomics of marine picocyanobacteria. Microbiol Mol Biol Rev 73:249–299

    Article  PubMed  CAS  Google Scholar 

  • Scheer H, Zhao KH (2008) Biliprotein maturation: the chromophore attachment. Mol Microbiol 68:263–276

    Article  PubMed  CAS  Google Scholar 

  • Schluchter WM, Shen G, Alvey RM, Biswas A, Saunee NA, Williams SR, Mille CA, Bryant DA (2010) Phycobiliprotein biosynthesis in cyanobacteria: structure and function of enzymes involved in post-translational modification. Adv Exp Med Biol 675:211–228

    Article  PubMed  CAS  Google Scholar 

  • Shukla A, Biswas A, Blot N, Partensky F, Karty JA, Hammad LA, Garczarek L, Gutu A, Schluchter WM, Kehoe DM (2012) Phycoerythrin-specific bilin lyase-isomerase controls blue-green chromatic acclimation in marine Synechococcus. Proc Natl Acad Sci USA 109:20136–20141

    Article  PubMed  CAS  Google Scholar 

  • Sidler WA (1994) Phycobilisome and phycobiliprotein structures. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer Academic, Dordrecht, pp 139–216

    Chapter  Google Scholar 

  • Six C, Thomas JC, Thion L, Lemoine Y, Zal F, Partensky F (2005) Two novel phycoerythrin-associated linker proteins in the marine cyanobacterium Synechococcus sp. strain WH8102. J Bacteriol 187:1685–1694

    Article  PubMed  CAS  Google Scholar 

  • Six C, Thomas JC, Garczarek L, Ostrowski M, Dufresne A, Blot N, Scanlan DJ, Partensky F (2007) Diversity and evolution of phycobilisomes in marine Synechococcus spp.: a comparative genomics study. Genome Biol 8:R259

    Article  PubMed  Google Scholar 

  • Swingley WD, Chen M, Cheung PC, Conrad AL, Dejesa LC, Hao J, Honchak BM, Karbach LE, Kurdoglu A, Lahiri S, Mastrian SD, Miyashita H, Page L, Ramakrishna P, Satoh S, Sattley WM, Shimada Y, Taylor HL, Tomo T, Tsuchiya T, Wang ZT, Raymond J, Mimuro M, Blankenship RE, Touchman JW (2008) Niche adaptation and genome expansion in the chlorophyll d-producing cyanobacterium Acaryochloris marina. Proc Natl Acad Sci USA 105:2005–2010

    Article  PubMed  CAS  Google Scholar 

  • Tandeau de Marsac N (1977) Occurrence and nature of chromatic adaptation in cyanobacteria 130(1):82–91

    CAS  Google Scholar 

  • Theiss C, Schmitt FJ, Pieper J, Nganou C, Grehn M, Vitali M, Olliges R, Eichler HJ, Eckert HJ (2011) Excitation energy transfer in intact cells and in the phycobiliprotein antennae of the chlorophyll d containing cyanobacterium Acaryochloris marina. J Plant Physiol 168:1473–1487

    Article  PubMed  CAS  Google Scholar 

  • Toole CM, Plank TL, Grossman AR, Anderson LK (1998) Bilin deletions and subunit stability in cyanobacterial light-harvesting proteins. Mol Microbiol 30:475–486

    Article  PubMed  CAS  Google Scholar 

  • Ughy B, Ajlani G (2004) Phycobilisome rod mutants in Synechocystis sp. strain PCC6803. Microbiology 150:4147–4156

    Article  PubMed  CAS  Google Scholar 

  • Umena Y, Kawakami K, Shen JR, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473:55–60

    Article  PubMed  CAS  Google Scholar 

  • Watanabe M, Iwai M, Narikawa R, Ikeuchi M (2009) Is the photosystem II complex a monomer or a dimer? Plant Cell Physiol 50:1674–1680

    Article  PubMed  CAS  Google Scholar 

  • Watanabe M, Sato M, Kondo K, Narikawa R, Ikeuchi M (2012) Phycobilisome model with novel skeleton-like structures in a glaucocystophyte Cyanophora paradoxa. Biochim Biophys Acta 1817:1428–1435

    Article  PubMed  CAS  Google Scholar 

  • Wilbanks SM, Glazer AN (1993) Rod structure of a phycoerythrin II-containing phycobilisome. II. Complete sequence and bilin attachment site of a phycoerythrin gamma subunit. J Biol Chem 268:1236–1241

    PubMed  CAS  Google Scholar 

  • Yi ZW, Huang H, Kuang TY, Sui SF (2005) Three-dimensional architecture of phycobilisomes from Nostoc flagelliforme revealed by single particle electron microscopy. FEBS Lett 579:3569–3573

    Article  PubMed  CAS  Google Scholar 

  • Zhao KH, Su P, Tu JM, Wang X, Liu H, Ploscher M, Eichacker L, Yang B, Zhou M, Scheer H (2007) Phycobilin:cystein-84 biliprotein lyase, a near-universal lyase for cysteine-84-binding sites in cyanobacterial phycobiliproteins. Proc Natl Acad Sci USA 104:14300–14305

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiko Ikeuchi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOC 71 kb)

Supplementary material (DOC 46 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, M., Ikeuchi, M. Phycobilisome: architecture of a light-harvesting supercomplex. Photosynth Res 116, 265–276 (2013). https://doi.org/10.1007/s11120-013-9905-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-013-9905-3

Keywords

Navigation