Skip to main content

Advertisement

Log in

Construction of hybrid photosynthetic units using peripheral and core antennae from two different species of photosynthetic bacteria: detection of the energy transfer from bacteriochlorophyll a in LH2 to bacteriochlorophyll b in LH1

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Typical purple bacterial photosynthetic units consist of supra-molecular arrays of peripheral (LH2) and core (LH1-RC) antenna complexes. Recent atomic force microscopy pictures of photosynthetic units in intact membranes have revealed that the architecture of these units is variable (Scheuring et al. (2005) Biochim Bhiophys Acta 1712:109–127). In this study, we describe methods for the construction of heterologous photosynthetic units in lipid-bilayers from mixtures of purified LH2 (from Rhodopseudomonas acidophila) and LH1-RC (from Rhodopseudomonas viridis) core complexes. The architecture of these reconstituted photosynthetic units can be varied by controlling ratio of added LH2 to core complexes. The arrangement of the complexes was visualized by electron-microscopy in combination with Fourier analysis. The regular trigonal array of the core complexes seen in the native photosynthetic membrane could be regenerated in the reconstituted membranes by temperature cycling. In the presence of added LH2 complexes, this trigonal symmetry was replaced with orthorhombic symmetry. The small lattice lengths for the latter suggest that the constituent unit of the orthorhombic lattice is the LH2. Fluorescence and fluorescence-excitation spectroscopy was applied to the set of the reconstituted membranes prepared with various proportions of LH2 to core complexes. Remarkably, even though the LH2 complexes contain bacteriochlorophyll a, and the core complexes contain bacteriochlorophyll b, it was possible to demonstrate energy transfer from LH2 to the core complexes. These experiments provide a first step along the path toward investigating how changing the architecture of purple bacterial photosynthetic units affects the overall efficiency of light-harvesting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AFM:

Atomic force microscopy

BChl:

Bacteriochlorophyll

CHAPS:

3-[(3-Cholamidopropyl)dimethyl-ammonio]propanesulfonic acid

Egg PC:

l-α-Phosphatidylcholine from egg yolk

(T)EM:

(Transmission) electron microscopy

FFT:

Fast Fourier transformation

LH1:

Light-harvesting 1

LH2:

Light-harvesting 2

LPR:

Lipid-to-protein ratio

NIR:

Near infra red

Rb. :

Rhodobacter

RC:

Reaction center

Rps. :

Rhodopseudomonas

References

  • Abramoff MD, Magelhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics Int 11:36–42

    Google Scholar 

  • Bahatyrova S, Frese RN, van der Werf KO, Otto C, Hunter CN, Olsen JD (2004) Flexibility and size heterogeneity of the LH1 light harvesting complex revealed by atomic force microscopy. Functional significance for bacterial photosynthesis. J Biol Chem 279(20):21327–21333

    Article  PubMed  CAS  Google Scholar 

  • Bergström H, Sundström V, van Grondelle R, Gillbro T, Cogdell R (1988) Energy transfer dynamics of isolated B800-850 and B800-820 pigment-protein complexes of Rhodobacter sphaeroides and Rhodopseudomonas acidophila. Biochim Biophys Acta, Bioenerg 936(1):90–98

    Article  Google Scholar 

  • Bose SK (1963) Media for anaerobic growth of photosynthetic bacteria. In: Gest H, San Pietro A, Vernon LF (eds) Bacterial photosynthesis. Antioch Press, Yellow Springs, Ohio, pp 501–510

    Google Scholar 

  • Deisenhofer J, Epp O, Miki K, Huber R, Michel H (1984) X-ray structure analysis of a membrane protein complex. Electron density map at 3 Å resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis. J Mol Biol 180(2):385–398

    Article  PubMed  CAS  Google Scholar 

  • Deisenhofer J, Epp O, Miki K, Huber R, Michel H (1986) Structure of the protein subunits in the photosynthetic reaction center of Rhodopseudomonas viridis at 3 Å resolution. Nature 318(6047):618–624

    Article  CAS  Google Scholar 

  • Duysens LNM (1964) Photosynthesis. Prog Biophys Mol Biol 14:1–104

    Article  Google Scholar 

  • Engelhardt H, Baumeister W, Saxton WO (1983) Electron microscopy of photosynthetic membranes containing bacteriochlorophyll b. Arch Microbiol 135:169–175

    Article  CAS  Google Scholar 

  • Fleming GR, van Grondelle R (1997) Femtosecond spectroscopy of photosynthetic light-harvesting systems. Curr Opin Struct Biol 7:738–748

    Article  PubMed  CAS  Google Scholar 

  • Gonçalves RP, Bernadac A, Sturgis JN, Scheuring S (2005a) Architecture of the native photosynthetic apparatus of Phaeospirillum molischianum. J Struct Biol 152(3):221–228

    Article  PubMed  CAS  Google Scholar 

  • Gonçalves RP, Busselez J, Lévy D, Seguin J, Scheuring S (2005b) Membrane insertion of Rhodopseudomonas acidophila light harvesting complex 2 investigated by high resolution AFM. J Struct Biol 149(1):79–86

    Article  PubMed  CAS  Google Scholar 

  • Hara M, Namba K, Hirata Y, Majima T, Kawamura S, Asada Y, Miyake J (1990) The photoreaction unit in Rhodopseudomonas viridis. Plant Cell Physiol 31(7):951–960

    CAS  Google Scholar 

  • Hess S, Feldchtein F, Babin A, Nurgaleev I, Pullerits T, Sergeev A, Sundström V (1993) Femtosecond energy transfer within the LH2 peripheral antenna of the photosynthetic purple bacteria Rhodobacter sphaeroides and Rhodopseudomonas palustris LL. Chem Phys Lett 216(3–6):247–257

    Article  CAS  Google Scholar 

  • Hess S, Aakesson E, Cogdell RJ, Pullerits T, Sundström V (1995a) Energy transfer in spectrally inhomogeneous light-harvesting pigment–protein complexes of purple bacteria. Biophys J 69(6):2211–2225

    PubMed  CAS  Google Scholar 

  • Hess S, Chachisvilis M, Timpmann K, Jones MR, Fowler GJS, Hunter CN, Sundström V (1995b) Temporally and spectrally resolved subpicosecond energy transfer within the peripheral antenna complex (LH2) and from LH2 to the core antenna complex in photosynthetic purple bacteria. Proc Natl Acad Sci USA 92:12333–12337

    Article  PubMed  CAS  Google Scholar 

  • Howard TD, McAuley-Hecht KE, Cogdell RJ (2000) Crystallization of membrane proteins. In: Baldwin SA (ed) Membrane transport. Oxford University Press, Oxford, UK, pp 269–307

    Google Scholar 

  • Hunter CN, Trucker JD, Niederman RA (2005) The assembly and organisation of photosynthetic membranes in Rhodobacter sphaeroides. Photochem Photobiol Sci 4:1023–1027

    Article  PubMed  CAS  Google Scholar 

  • Ikeda-Yamasaki I, Odahara T, Mitsuoka K, Fujiyoshi Y, Murata K (1998) Projection map of the reaction center-light harvesting I complex from Rhodopseudomonas viridis at 10 Å resolution. FEBS Lett 425(3):505–508

    Article  PubMed  CAS  Google Scholar 

  • Jamieson SJ, Wang P, Qian P, Kirkland JY, Conroy MJ, Hunter CN, Bullough PA (2002) Projection structure of the photosynthetic reaction centre-antenna complex of Rhodospirillum rubrum at 8.5 Å resolution. EMBO J 21(15):3927–3935

    Article  PubMed  CAS  Google Scholar 

  • Jap BK, Zulauf M, Scheybani T, Hefti A, Baumeister W, Aebi U, Engel A (1992) 2D crystallization: from art to science. Ultramicroscopy 46(1–4):45–84

    Article  PubMed  CAS  Google Scholar 

  • Kennis JTM, Streltsov AM, Aartsma TJ, Nozawa T, Amesz J (1996) Energy transfer and exciton coupling in Isolated B800-850 complexes of the photosynthetic purple sulfur bacterium Chromatium tepidum. The effect of structural symmetry on bacteriochlorophyll excited states. J Phys Chem 100:2438–2442

    Article  CAS  Google Scholar 

  • Koepke J, Hu X, Muenke C, Schulten K, Michel H (1996) The crystal structure of the light-harvesting complex II (B800-850) from Rhodospirillum molischianum. Structure 4(5):581–597

    Article  PubMed  CAS  Google Scholar 

  • Kühlbrandt W (1992) Two-dimensional crystallization of membrane proteins. Q Rev Biophys 25(1):1–49

    PubMed  Google Scholar 

  • McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ, Isaacs NW (1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374(6522):517–521

    Article  CAS  Google Scholar 

  • Monshouwer R, Ortiz de Zarate I, van Mourik F, van Grondelle R (1995) Low-intensity pump-probe spectroscopy on the B800 to B850 transfer in the light harvesting complex II of Rhodobacter sphaeroides. Chem Phys Lett 246(3):341–346

    Article  CAS  Google Scholar 

  • Oling F, Boekema EJ, Ortiz de Zarate I, Visschers R, van Grondelle R, Keegstra W, Brisson A, Picorel R (1996) Two-dimensional crystals of LH2 light-harvesting complexes from Ectothiorhodospira sp. and Rhodobacter capslatus investigated by electron microscopy. Biochim Biophys Acta 1273: 44–50

    Article  Google Scholar 

  • Pullerits T, Sundström V (1996) Photosynthetic light-harvesting pigment–protein complexes: toward understanding how and why. Acc Chem Res 29:381–389

    Article  CAS  Google Scholar 

  • Qian P, Addlesee HA, Ruban AV, Wang P, Bullough PA, Hunter CN (2003) A Reaction Center-light-harvesting 1 complex (RC-LH1) from a Rhodospirillum rubrum mutant with altered esterifying pigments: characterization by optical spectroscopy and cryo-electron microscopy. J Biol Chem 278(26):23678–23685

    Article  PubMed  CAS  Google Scholar 

  • Qian P, Hunter CN, Bullough PA (2005) The 8.5 Å projection structure of the core RC-LH1-PufX dimer of Rhodobacter sphaeroides. J Mol Biol 349:948–960

    Article  PubMed  CAS  Google Scholar 

  • Ritz T, Park S, Schulten K (2001) Kinetics of excitation migration and trapping in the photosynthetic unit of purple bacteria. J Phys Chem B 105:8259–8267

    Article  CAS  Google Scholar 

  • Roszak AW, Howard TD, Southall J, Gardiner AT, Law CJ, Isaacs NW, Cogdell RJ (2003) Crystal structure of the RC-LH1 core complex from Rhodopseudomonas palustris. Science 302(5652):1969–1972

    Article  PubMed  CAS  Google Scholar 

  • Scheuring S, Sturgis JN (2005) Chromatic adaptation of photosynthetic membranes. Science 309:484–487

    Article  PubMed  CAS  Google Scholar 

  • Scheuring S, Rigaud J-L, Sturgis JN (2004) Variable LH2 stoichiometry and core clustering in native membranes of Rhodospirillum photometricum. EMBO J 23(21):4127–4133

    Article  PubMed  CAS  Google Scholar 

  • Scheuring S, Lévy D, Rigaud J-L (2005) Watching the components of photosynthetic bacterial membranes and their in situ organisation by atomic force microscopy. Biochim Biophys Acta 1712:109–127

    Article  PubMed  CAS  Google Scholar 

  • Scheuring S, Gonçalves RP, Prima V, Sturgis JN (2006) The photosynthetic apparatus of Rhodopseudomonas palustris: structures and organization. J Mol Biol 358:83–96

    Article  PubMed  CAS  Google Scholar 

  • Shreve AP, Trautman JK, Frank HA, Owens TG, Albrecht AC (1991) Femtosecond energy-transfer processes in the B800-850 light-harvesting complex of Rhodobacter sphaeroides 2.4.1. Biochim Biophys Acta 1058(2):280–288

    Article  PubMed  CAS  Google Scholar 

  • Stamouli A, Kafi S, Klein DCG, Oosterkamp TH, Frenken JWM, Cogdell RJ, Aartsma TJ (2003) The ring structure and organization of light harvesting 2 complexes in a reconstituted lipid bilayer, resolved by atomic force microscopy. Biophys J 84(4):2483–2491

    Article  PubMed  CAS  Google Scholar 

  • Sundström V, Pullerits T, Grondelle Rv (1999) Photosynthetic light-harvesting: reconciling dynamics and structure of purple bacterial LH2 reveals function of photosynthetic unit. J Phys Chem B 103:2327–2346

    Article  Google Scholar 

  • Trissl H-W, Law C, Cogdell RJ (1999) Uphill energy transfer in LH2-containing purple bacteria at room temperature. Biochim Biophys Acta 1412:149–172

    Article  PubMed  CAS  Google Scholar 

  • Walz T, Ghosh R (1997) Two-dimensional crystallization of the light-harvesting I-reaction centre photounit from Rhodospirillum rubrum. J Mol Biol 265(2):107–111

    Article  PubMed  CAS  Google Scholar 

  • Walz T, Jamieson SJ, Bowers CM, Bullough PA, Hunter CN (1998) Projection structures of three photosynthetic complexes from Rhodobacter sphaeroides: LH2 at 6 Å, LH1 and RC-LH1 at 25 Å. J Mol Biol 282(4):833–845

    Article  PubMed  CAS  Google Scholar 

  • Weigl JW (1953) The absorption spectrum of bacteriochlorophyll. J Am Chem Soc 75:999–1000

    Article  CAS  Google Scholar 

Download references

Acknowledgments

RF and HH thank Grant-in-aid (# 17204026, # 17654083) from Japanese Ministry of Education, Culture, Sports, Science and Technology, Strategic International Cooperative Program from JST, and Research Center of Industry Innovation for financial supports. RJC and ATG thank the BBSRC for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ritsuko Fujii or Hideki Hashimoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujii, R., Shimonaka, S., Uchida, N. et al. Construction of hybrid photosynthetic units using peripheral and core antennae from two different species of photosynthetic bacteria: detection of the energy transfer from bacteriochlorophyll a in LH2 to bacteriochlorophyll b in LH1. Photosynth Res 95, 327–337 (2008). https://doi.org/10.1007/s11120-007-9260-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-007-9260-3

Keywords

Navigation