Skip to main content
Log in

Cyanobacterial NADPH dehydrogenase complexes

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Cyanobacteria possess functionally distinct multiple NADPH dehydrogenase (NDH-1) complexes that are essential to CO2 uptake, photosystem-1 cyclic electron transport and respiration. The unique nature of cyanobacterial NDH-1 complexes is the presence of subunits involved in CO2 uptake. Other than CO2 uptake, chloroplastic NDH-1 complex has a similar role as cyanobacterial NDH-1 complexes in photosystem-1 cyclic electron transport and respiration (chlororespiration). In this mini-review we focus on the structure and function of cyanobacterial NDH-1 complexes and their phylogeny. The function of chloroplastic NDH-1 complex and characteristics of plants defective in NDH-1 are also described for comparison.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

NDH-1,:

NAD(P)H dehydrogenase

PQ:

Plastoqunone

PS:

Photosystem

WT:

Wild type

References

  • Arteni AA, Zhang P, Battchikova N et al (2006) Structural characterization of NDH-1 complexes of Thermosynechococcus elongatus by single particle electron microscopy. Biochim Biophys Acta 1757:1469–1475

    Article  CAS  PubMed  Google Scholar 

  • Badger MR, Price GD, Long BM et al (2003) The environmental plasticity and ecological genomics of the cyanobacterial CO2 concentrating mechanism. J Exp Bot 57:249–265

    Article  CAS  Google Scholar 

  • Battchikova N, Zhang P, Rudd S et al (2005) Identification of NdhL and Ssl1690 (NdhO) in NDH-1L and NDH-1M complexes of Synechocystis sp PCC 6803. J Biol Chem 280:2587–2595

    Article  CAS  PubMed  Google Scholar 

  • Bennoun P (1982) Evidence for a respiratory chain in the chloroplast. Proc Natl Acad Sci USA 79:4352–4356

    Article  CAS  PubMed  Google Scholar 

  • Beudeker R, Cannon GC, Kuenen JG et al (1980) Relations between RuBP carboxylase, carboxysomes and CO2 fixing capacity in the obligate chemolithotroph Thiobacillus neapolitana grown under different limitations in the chemostat. Arch Microbiol 1241:185–189

    Article  Google Scholar 

  • Burrows PA, Sazanov LA, Svab Z et al (1998) Identification of a functional respiratory complex in chloroplasts through analysis of tobacco mutants containing disrupted plastid ndh genes. EMBO J 17:868–876

    Article  CAS  PubMed  Google Scholar 

  • Carol P, Stevenson D, Bisanz C et al (1999) Mutations in the Arabidopsis gene IMMUTANS cause a variegated phenotype by inactivating a chloroplast terminal oxidase associated with phytoene desaturation. Plant Cell 11:57–68

    Article  CAS  PubMed  Google Scholar 

  • Casano LM, Zapata JM, Martin M et al (2000) Chlororespiration and poising of cyclic electron transport—Plastoquinone as electron transporter between thylakoid NADH dehydrogenase and peroxidase. J Biol Chem 275:942–948

    Article  CAS  PubMed  Google Scholar 

  • Deng Y., Ye J, Mi H (2003a) Effects of low CO2 on NAD(P)H dehydrogenase, a mediator of cyclic electron transport around photosystem I in the cyanobacterium Synechocystis PCC 6803. Plant Cell Physiol 44:534–540

    Article  CAS  Google Scholar 

  • Deng Y, Ye J, Mi H et al (2003b) Response of NAD(P)H dehydrogenase complex to the alteration of CO2 concentration in the cyanobacterium Synechocystis PCC 6803. J Plant Physiol 160:967–970

    Article  CAS  Google Scholar 

  • Dzelzkalns VA, Obinger C, Regelsberger G et al (1994) Deletion of the structural gene for the NADH-dehydrogenase subunit of Synechocystis 6803 alters respiratory properties. Plant Physiol 106:1435–1442

    Article  CAS  PubMed  Google Scholar 

  • Endo T, Shikanai T, Takabayashi A et al (1999) The role of chloroplastic NAD(P)H dehydrogenase in photoprotection. FEBS Lett 457:5–8

    Article  CAS  PubMed  Google Scholar 

  • Figge RM, Cassier-Chauvat C, Chauvat F et al (2001) Characterization and analysis of an NAD(P)H dehydrogenase transcriptional regulator critical for the survival of cyanobacteria facing inorganic carbon starvation and osmotic stress. Mol Microbiol 39:455–468

    Article  CAS  PubMed  Google Scholar 

  • Friedrich T, Scheide D (2000) The respiratory complex I of bacteria, archaea and eukarya and its module common with membrane-bound multisubunit hydrogenases. FEBS Lett 479:1–5

    Article  CAS  PubMed  Google Scholar 

  • Giordano M, Beardall J, Raven JA (2005) CO2 concentrating mechanisms in algae: Mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol 56:99–131

    Article  CAS  PubMed  Google Scholar 

  • Herranen M, Battchikova N, Zhang P et al (2004) Towards functional proteomics of membrane protein complexes in Synechocystis sp PCC 6803. Plant Physiol 134:470–481

    Article  CAS  PubMed  Google Scholar 

  • Hihara Y, Kamei A, Kanehisa M et al (2001) DNA microarray analysis of cyanobacterial gene expression during acclimation to high light. Plant Cell 13:793–806

    Article  CAS  PubMed  Google Scholar 

  • Howitt CA, Vermaas WFJ (1998) Quinol and cytochrome oxidases in the cyanobacterium Synechocystis sp. PCC 6803. Biochemistry 37:17944–17951

    Article  CAS  PubMed  Google Scholar 

  • Joët T, Cournac L, Peltier G et al (2002) Cyclic electron flow around photosystem I in C3 plants. In vivo control by the redox state of chloroplasts and involvement of the NADH-dehydrogenase complex. Plant Physiol 128:760–769

    Article  PubMed  Google Scholar 

  • Josse EM, Alcaraz JP, Labouré AM et al (2003) In vitro characterization of a plastid terminal oxidase (PTOX). Eur J Biochem 270:3787–3794

    Article  CAS  PubMed  Google Scholar 

  • Josse EM, Simkin AJ, Gaffe J et al (2000) A plastid terminal oxidase associated with carotenoid desaturation during chromoplast differentiation. Plant Physiol 123:1427–1436

    Article  CAS  PubMed  Google Scholar 

  • Kaneko T, Sato S, Kotani H et al (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3:109–136

    Article  CAS  PubMed  Google Scholar 

  • Kaplan A, Reinhold L (1999) The CO2 concentrating mechanisms in photosynthetic microorganisms. Annu Rev Plant Physiol Plant Mol Biol 50:539–570

    Article  CAS  PubMed  Google Scholar 

  • Klughammer B, Sultemeyer D, Badger MR et al (1999) The involvement of NAD(P)H dehydrogenase subunits, NdhD3 and NdhF3, in high-affinity CO2 uptake in Synechocystis sp. PCC 7002 gives evidence for multiple NDH-1 complexes with specific roles in cyanobacteria. Mol Microbiol 32:1305–1315

    Article  CAS  PubMed  Google Scholar 

  • Ma W, Deng Y, Ogawa T et al (2006) Active NDH-1 complexes from the cyanobacterium Synechocystis sp Strain PCC 6803. Plant Cell Physiol 47:1432–1436

    Article  CAS  PubMed  Google Scholar 

  • Ma W, Mi H (2005) Expression and activity of type-1 NAD(P)H dehydrogenase at different growth phases of cyanobacterium, Synechocystis PCC 6803. Physiol Plant 125:135–140

    Article  CAS  Google Scholar 

  • Maeda S, Badger MR, Price GD (2002) Novel gene products associated with NdhD3/D4-containing NDH-1 complexes are involved in photosynthetic CO2 hydration in the cyanobacterium, Synechococcus sp. PCC 7492. Mol Microbiol 43:425–435

    Article  CAS  PubMed  Google Scholar 

  • Matthijs HCP, Ludérus EME, Löffler HJM et al (1984) Energy metabolism in the cyanobacterium Plectonema boryanum. Participation of the thylakoid photosynthetic electron transfer chain in the dark respiration of NADPH and NADH. Biochim Biophys Acta 766:29–37

    Article  CAS  Google Scholar 

  • Mi H, Endo T, Schreiber U et al. (1992a) Donation of electrons from cytosolic components to the intersystem chain in the cyanobacterium Synechococcus sp. PCC 7002 as determined by reduction of P700+. Plant Cell Physiol 33:1099–1105

    CAS  Google Scholar 

  • Mi H, Endo T, Schreiber U et al (1992b) Electron donation from cyclic and respiratory flows to the photosynthetic intersystem chain is mediated by pyridine nucleotide dehydrogenase in the cyanobacterium Synechocystis PCC 6803. Plant Cell Physiol 33:1233–1237

    CAS  Google Scholar 

  • Mi H, Endo T, Schreiber U et al (1994) NAD(P)H-dehydrogenase-dependent cyclic electron flow around photosystem I in the cyanobacterium Synechocystis PCC 6803: a study of dark-starved cells and spheroplasts. Plant Cell Physiol 35:163–173

    CAS  Google Scholar 

  • Mi H, Endo T, Ogawa T et al (1995) Thylakoid membrane-bound pyridine nucleotide dehydrogenase complex mediated cyclic electron transport in the cyanobacterium Synechocystis PCC 6803. Plant Cell Physiol 36:661–668

    CAS  Google Scholar 

  • Mi H , Deng Y , Tanaka Y et al (2001) Photo-induction of an NADPH dehydrogenase which functions as a mediator of electron transport to the intersystem chain in the cyanobacterium Synechocystis PCC 6803. Photosynth Res 70:167–173

    Article  CAS  PubMed  Google Scholar 

  • Munekage Y, Hashimoto M, Miyake C et al (2004) Cyclic electron flow around photosystem I is essential for photosynthesis. Nature 429:579–582

    Article  CAS  PubMed  Google Scholar 

  • Munekage Y, Hojo M, Meurer J et al (2002) PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. Cell 110:361–371

    Article  CAS  PubMed  Google Scholar 

  • Munshi MK, Kobayashi Y, Shikanai T (2005) Identification of a novel protein, CRR7, required for the stabilization of the chloroplast NAD(P)H dehydrogenase complex in Arabidopsis. Plant J 44:1036–1044

    Article  CAS  Google Scholar 

  • Munshi MK, Kobayashi Y, Shikanai T (2006) Chlororespiratory reduction 6 is a novel factor required for accumulation of the chloroplast NAD(P)H dehydrogenase complex in Arabidopsis. Plant Physiol 141:737–744

    Article  CAS  PubMed  Google Scholar 

  • Ogawa T (1990) Mutants of Synechocystis PCC 6803 defective in inorganic carbon transport. Plant Physiol 94:760–765

    CAS  PubMed  Google Scholar 

  • Ogawa T (1991a) A gene homologous to the subunit-2 gene of NADH dehydrogenase is essential to inorganic carbon transport of Synechocystis PCC 6803. Proc Natl Acad Sci USA 88:4275–4279

    Article  CAS  Google Scholar 

  • Ogawa T (1991b) Cloning and inactivation of a gene essential to inorganic carbon transport of Synechocystis PCC 6803. Plant Physiol 96:280–284

    CAS  Google Scholar 

  • Ogawa T. (1992). Identification and characterization of the ictA/ndhL gene product essential to inorganic carbon transport of Synechocystis PCC 6803. Plant Physiol 99:1604–1608

    CAS  PubMed  Google Scholar 

  • Ohkawa H, Pakrasi HB, Ogawa T (2000) Two types of functionally distinct NAD(P)H dehydrogenases in Synechocystis sp strain PCC 6803. J Biol Chem 275:31630–31634

    Article  CAS  PubMed  Google Scholar 

  • Ohkawa H, Sonoda M, Katoh H et al (1998) The use of mutants in the analysis of the CCM in cyanobacteria. Can J Bot 76:1035–1042

    Article  CAS  Google Scholar 

  • Ohkawa H, Sonoda M, Shibata M et al (2001) Localization of NAD(P)H dehydrogenase in the cyanobacterium Synechocystis sp strain PCC 6803. J Bacteriol 183:4938–4939

    Article  CAS  PubMed  Google Scholar 

  • Omata T, Price GD, Badger MR et al (1999) Identification of an ATP-binding cassette transporter involved in bicarbonate uptake in the cyanobacterium Synechococcus sp strain PCC7492. Proc Natl Acad Sci USA 96:13571–13576

    Article  CAS  PubMed  Google Scholar 

  • Peltier G, Cournac L (2002) The chlororespiration. Ann Rev Plant Biol 53: 523–550

    Article  CAS  Google Scholar 

  • Peschek GA (1980) Electron transport reactions in respiratory particles of hydrogenase-induced Anacystis nidulans. Arch Microbiol 125:123–131

    Article  CAS  Google Scholar 

  • Price GD, Coleman JR, Badger MR (1992) Association of carbonic anhydrase activity with carboxysomes isolated from the cyanobacterium Synechococcus PCC 7942. Plant Physiol 100:784–793

    CAS  PubMed  Google Scholar 

  • Price GD, Woodger FJ, Badger MR et al (2004) Identification of a SulP-type bicarbonate transporter in marine cyanobacteria. Proc Natl Acad Sci USA 101:18228–18233

    Article  CAS  PubMed  Google Scholar 

  • Prommeenate P, Lennon AM, Markert C et al (2004) Subunit composition of NDH-1 complexes of Synechocystis sp. PCC 6803: identification of two new ndh gene products with nuclear-encoded homologues in the chloroplast Ndh complex. J Biol Chem 29:28165–2873

    Article  CAS  Google Scholar 

  • Rhoads DM, McIntosh L (1991) Isolation and characterization of a cDNA clone encoding an alternative oxidase protein of Sauromatum guttatum (Schott). Proc Natl Acad Sci USA 88:2122–2126

    Article  CAS  PubMed  Google Scholar 

  • Rumeau D, Becuwe-Linka N, Beyly A et al (2005) New subunits NDH-M, -N, and -O, encoded by nuclear genes, are essential for plastid Ndh complex functioning in higher plants. Plant Cell 17:219–232

    Article  CAS  PubMed  Google Scholar 

  • Sandmann G, Malkin R (1983) NADH and NADPH as electron donors to respiratory and photosynthetic electron transport in the blue-green alga, Aphanocapsa. Biochim Biophys Acta 725:221–224

    Article  CAS  Google Scholar 

  • Scherer S, Häfele U, Krüger GHJ et al (1988) Respiration, cyanide-insensitive oxygen uptake and oxidative photophosphorylation in cynobacteria. Physiol Plant 72:379–384

    Article  CAS  Google Scholar 

  • Schreiber U, Endo T, Mi H et al (1995) Quenching analysis of chlorophyll fluorescence by the saturation pulse method: Particular aspects relating to the study of eukaryotic algae and cyanobacteria. Plant Cell Physiol 36:873–882

    CAS  Google Scholar 

  • Shibata M, Katoh H, Sonoda M et al (2002a) Genes essential to sodium-dependent bicarbonate transport in cyanobacteria: function and phylogenetic analysis. J Biol Chem 277:18658–18664

    Article  CAS  Google Scholar 

  • Shibata M, Ohkawa H, Kaneko T et al (2001) Distinct constitutive and low-CO2-induced CO2 uptake systems in cyanobacteria: genes involved and their phylogenetic relationship with homologous genes in other organisms. Proc Natl Acad Sci USA 98:11789–11794

    Article  CAS  PubMed  Google Scholar 

  • Shibata M, Ohkawa H, Katoh H et al (2002b) Two CO2 uptake systems in cyanobacteria: four systems for inorganic carbon acquisition in Synechocystis sp. strain PCC 6803. Funct Plant Biol 29:123–129

    Article  CAS  Google Scholar 

  • Shikanai T, Endo T, Hashimoto T et al (1998) Directed disruption of the tobacco ndhB gene impairs cyclic electron flow around photosystem I. Proc Natl Acad Sci USA 95:9705–9709

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Katada S, Ishikawa H et al (1997) Electron flow from NAD(P)H dehydrogenase to photosystem I is required for adaptation to salt shock in the cyanobacterium Synechocystis sp PCC 6803. Plant Cell Physiol 38:1311–1318

    CAS  Google Scholar 

  • Tchernov D, Helman Y, Keren N et al (2001). Passive entry of CO2 and its energy-dependent intracellular conversion HCO -3 in cyanobacteria are driven by a photosystem I-generated ΔμH+. J Biol Chem 276:23450–23455

    Article  CAS  PubMed  Google Scholar 

  • Volokita M, Zenvirth D, Kaplan A et al (1984) Nature of the inorganic carbon species actively taken up by the cyanobacterium Anabaena variabilis. Plant Physiol 76:599–602

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Duan W, Takabayashi A et al (2006) Chloroplastic NAD(P)H dehydrogenase in tobacco leaves functions in alleviation of oxidative damage caused by temperature stress. Plant Physiol 41:465–474

    Article  CAS  Google Scholar 

  • Wang HL, Postier BL, Burnap RL (2004) Alterations in global patterns of gene expression in Synechocystis sp. PCC 6803 in response to inorganic carbon limitation and the inactivation of ndhR, a LysR family regulator. J Biol Chem 279:5739–5751

    Article  CAS  PubMed  Google Scholar 

  • Yeremenko N, Jeanjean R, Prommeenate P et al (2005) Open reading frame ssr2016 is required for antimycin A-sensitive photosystem I-driven cyclic electron flow in the cyanobacterium Synechocystis sp PCC 6803. Plant Cell Physiol 46:1433–1436

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Battchikova N, Jansen T et al (2004) Expression and functional roles of the two distinct NDH-1 complexes and the carbon acquisition complex NdhD3/NdhF3/CupA/ Sll1735 in Synechocystis sp PCC 6803. Plant Cell 16:3326–3340

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Battchikova N, Paakkarinen V et al (2005) Isolation, subunit composition and interaction of the NDH-1 complexes from Thermosynechococcus elongatus BP-1. Biochem J 390:513–520

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by grants to HM from the National Natural Science Foundation of China (No. 30470151 and No. 90306013) and in part supported by a grant to TO by the Membrane Biology EMSL Scientific Grand Challenge Project at the W. R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the US Department of Energy Office of Biological and Environmental Research program located at Pacific Northwest National Laboratory. Pacific Northwest National Laboratory is operated for the Department of Energy by Battelle.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teruo Ogawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogawa, T., Mi, H. Cyanobacterial NADPH dehydrogenase complexes. Photosynth Res 93, 69–77 (2007). https://doi.org/10.1007/s11120-006-9128-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-006-9128-y

Keywords

Navigation