Skip to main content
Log in

Protein–protein interactions within peroxiredoxin systems

  • Mini Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Peroxiredoxin systems in plants were demonstrated involved in crucial roles related to reactive oxygenated species (ROS) metabolism and the linked cell signalling to ROS. Peroxiredoxins function as peroxidasic systems that combine at least a reactivating reductant agent like thioredoxins, and sometimes glutaredoxins and glutathion. In the past three years a number of peroxiredoxin structures were solved by crystallography in different experimental crystallisation conditions. The structures have revealed a significant propensity of peroxiredoxins for oligomerism that was confirmed by biophysical studies in solution using NMR and other methods as analytical ultra-centrifugation. These studies showed that quaternary structures of peroxiredoxins involve specific protein–protein interaction interfaces that rely upon the peroxiredoxin types and/or their redox conditions. The protein–protein interactions with the reactivating redoxins essentially lead to transient unstable complexes. We review herein the different protein–protein interactions characterized or deduced from those reports.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

GRX:

glutaredoxin

GSH:

glutathion

PRX:

peroxiredoxin

TRX:

thioredoxin

References

  • Alphey MS, Bond CS, Tetaud E, Fairlamb AH, Hunter WN (2000) The structure of reduced tryparedoxin peroxidase reveals a decamer and insight into reactivity of 2Cys-peroxiredoxins. J Mol Biol 300:903–916

    Article  PubMed  CAS  Google Scholar 

  • Baker LMS, Poole LB (2003) Catalytic mechanism of thiol peroxidase from Escherichia coli. Sulfenic acid formation and overoxidation of essential CYS61. J Biol Chem 278:9203–9211

    Article  PubMed  CAS  Google Scholar 

  • Biteau B, Labarre J, Toledano MB (2003) ATP-dependent reduction of cysteine-sulphinic acid by S cerevisiae sulphiredoxin. Nature 425:980–984

    Article  PubMed  CAS  Google Scholar 

  • Bréhelin C, Meyer EH, de Souris J, Bonnard G, Meyer Y (2003) Resemblance and dissemblance of Arabidopsis type II peroxiredoxins: similar sequences for divergent gene expression, protein localization, and activity. Plant Physiol 132:2045–2057

    Article  PubMed  CAS  Google Scholar 

  • Bryk R, Griffin P, Nathan C (2000) Peroxinitrite reductase activity of bacterial peroxiredoxins. Nature 407:211–215

    Article  PubMed  CAS  Google Scholar 

  • Cao Z, Roszak AW, Gourlay LJ, Lindsay JG, Isaacs NW (2005) Bovine mitochondrial peroxiredoxin III forms a two-ring catenane. Structure (Camb) 13:1661–1664

    Article  CAS  Google Scholar 

  • Cha MK, Yun CH, Kim IH (2000) Interaction of human thiol-specific antioxidant protein 1 with erythrocyte plasma membrane. Biochemistry 39:6944–6950

    Article  PubMed  CAS  Google Scholar 

  • Chae HZ, Robison K, Poole LB, Church G, Storz G, Rhee SG (1994) Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes. Proc Natl Acad Sci U S A 91:7017–7021

    Article  PubMed  CAS  Google Scholar 

  • Chang T, Jeong W, Choi SY, Yu S, Kang SW, Rhee SG (2002) Regulation of peroxiredoxin I activity by Cdc2-mediated phosphorylation. J Biol Chem 277:25370–25376

    Article  PubMed  CAS  Google Scholar 

  • Chauhan R, Mande SC (2001) Characterization of the Mycobacterium tuberculosis H37Rv alkyl hydroperoxidase AhpC points to the importance of ionic interactions in oligomerization and activity. Biochem J 354:209–215

    Article  PubMed  CAS  Google Scholar 

  • Cheong NE, Choi YO, Lee KO, Kim WY, Jung BG, Chi YH, Jeong JS, Kim K, Cho MJ, Lee SY (1999) Molecular cloning, expression, and functional characterization of a 2Cys-peroxiredoxin in Chinese cabbage. Plant Mol Biol 40:825–834

    Article  PubMed  CAS  Google Scholar 

  • Choi HJ, Kang SW, Yang CH, Rhee SG, Ryu SE (1998) Crystallization and preliminary X-ray studies of hORF6, a novel human antioxidant enzyme. Acta Crystallogr D Biol Crystallogr 54:436–437

    Article  PubMed  CAS  Google Scholar 

  • Choi J, Choi S, Choi J, Cha M, Kim I, Shin W (2003) Crystal structure of Escherichia coli thiol peroxidase in the oxidized state: insights into intramolecular disulfide formation and substrate binding in atypical 2-Cys peroxiredoxins. J Biol Chem 278:49478–49486

    Article  PubMed  CAS  Google Scholar 

  • Choi J, Choi S, Chon JK, Choi J, Cha M, Kim I, Shin W (2005) Crystal structure of the C107S/C112S mutant of yeast nuclear 2-Cys peroxiredoxin. Proteins 61:1146–1149

    Article  PubMed  CAS  Google Scholar 

  • Collin V, Bourguet EI, Marchand C, Hirasawa M, Lancelin JM, Knaff DB, Maslow MM (2003) The Arabidopsis plastidial thioredoxins: new functions and new insights into specificity. J Biol Chem 278:23747–23752

    Article  PubMed  CAS  Google Scholar 

  • Declercq JP, Evrard C (2001a)A twinned monoclinic crystal form of human peroxiredoxin 5 with eight molecules in the asymmetric unit. Acta Crystallogr D Biol Crystallogr 57:1829–1835

    Article  CAS  Google Scholar 

  • Declercq JP, Evrard C, Clippe A, Stricht DV, Bernard A, Knoops B (2001b) Crystal structure of human peroxiredoxin 5, a novel type of mammalian peroxiredoxin at 1.5 Å resolution. J Mol Biol 311:751–759

    Article  CAS  Google Scholar 

  • Dietz K (2003) Plant peroxiredoxins. Annu Rev Plant Biol 54:93–107

    Article  PubMed  CAS  Google Scholar 

  • Dietz K, Jacob S, Oelze M, Laxa M, Tognetti V, de Miranda SMN, Baier M, Finkemeier I (2006) The function of peroxiredoxins in plant organelle redox metabolism. J Exp Bot (in press)

  • Dietz KJ, Horling F, König J, Baier M (2002) The function of the chloroplast 2-cysteine peroxiredoxin in peroxide detoxification and its regulation. J Exp Bot 53:1321–1329

    Article  PubMed  CAS  Google Scholar 

  • Echalier A, Trivelli X, Corbier C, Rouhier N, Walker O, Tsan P, Jacquot JP, Aubry A, Krimm I, Lancelin JM (2005) Crystal structure and solution NMR dynamics of a D (type II) peroxiredoxin glutaredoxin and thioredoxin dependent: a new insight into the peroxiredoxin oligomerism. Biochemistry 44:1755–1767

    Article  PubMed  CAS  Google Scholar 

  • Ellis HR, Poole LB (1997a) Roles for the two cysteine residues of AhpC in catalysis of peroxide reduction by alkyl hydroperoxide reductase from Salmonella typhimurium. Biochemistry 36:13349–13356

    Article  CAS  Google Scholar 

  • Ellis HR, Poole LB (1997b) Novel application of 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole to identify cysteine sulfenic acid in the AhpC component of alkyl hydroperoxide reductase. Biochemistry 36:15013–15018

    Article  CAS  Google Scholar 

  • Evrard C, Capron A, Marchand C, Clippe A, Wattiez R, Soumillion P, Knoops B, Declercq J (2004a) Crystal structure of a dimeric oxidized form of human peroxiredoxin 5. J Mol Biol 337:1079–1090

    Article  CAS  Google Scholar 

  • Evrard C, Smeets A, Knoops B, Declercq JP (2004b) Crystal structure of the C47S mutant of human peroxiredoxin 5. J Chem Cryst 34:553

    Article  CAS  Google Scholar 

  • Fratelli M, Demol H, Puype M, Casagrande S, Eberini I, Salmona M, Bonetto V, Mengozzi M, Duffieux F, Miclet E, Bachi A, Vandekerckhove J, Gianazza E, Ghezzi P (2002) Identification by redox proteomics of glutathionylated proteins in oxidatively stressed human T lymphocytes. Proc Natl Acad Sci 99:3505–3510

    Article  PubMed  CAS  Google Scholar 

  • Fratelli M, Demol H, Puype M, Casagrande S, Villa P, Eberini I, Vandekerckhove J, Gianazza E, Ghezzi P (2003) Identification of proteins undergoing glutathionylation in oxidatively stressed hepatocytes and hepatoma cells. Proteomics 3:1154–1161

    Article  PubMed  CAS  Google Scholar 

  • Georgiou G, Masip L (2003) An overoxidation journey with a return ticket. Science 300:592–594

    Article  PubMed  CAS  Google Scholar 

  • Ghezzi P (2005) Regulation of protein function by glutathionylation. Free Radic Res 39:573–580

    PubMed  CAS  Google Scholar 

  • Giustarini D, Donne ID, Colombo R, Petralia S, Giampaoletti S, Milzani A, Rossi R (2003) Protein glutathionylation in erythrocytes. Clin Chem 49:327–330

    Article  PubMed  CAS  Google Scholar 

  • Guimarães BG, Souchon H, Honoré N, Joanis BS, Brosch R, Shepard W, Cole ST, Alzari PM (2005) Structure and mechanism of the alkyl hydroperoxidase AhpC, a key element of the Mycobacterium tuberculosis defense system against oxidative stress. J Biol Chem 280:25735–25742

    Article  PubMed  CAS  Google Scholar 

  • Haris JR (1969) Some negative contrast staining features of a protein from erythrocyte gosts. J Mol Biol 46:329–335

    Article  Google Scholar 

  • Hirotsu S, Abe Y, Okada K, Nagahara N, Hori H, Nishino T, Hakoshima T (1999) Crystal structure of a multifunctional 2-Cys peroxiredoxin heme-binding protein 23 kDa/proliferation-associated gene product. Proc Natl Acad Sci U S A 96:12333–12338

    Article  PubMed  CAS  Google Scholar 

  • Hofmann B, Hecht H, Flohé L (2002) Peroxiredoxins. Biol Chem 383:347–364

    Article  PubMed  CAS  Google Scholar 

  • Jeong JS, Kwon SJ, Kang SW, Rhee SG, Kim K (1999) Purification and characterization of a second type thioredoxin peroxidase (type II TPx) from Saccharomyces cerevisiae. Biochemistry 38:776–783

    Article  PubMed  CAS  Google Scholar 

  • Jeon S & Ishikawa K (2003) Characterization of novel hexadecameric thioredoxin peroxidase from Aeropyrum pernix K1. J Biol Chem 278:24174–24180

    Article  PubMed  CAS  Google Scholar 

  • Jeong W, Cha MK, Kim IH (2000) Thioredoxin-dependent hydroperoxide peroxidase activity of bacterioferritin comigratory protein (BCP) as a new member of the thiol-specific antioxidant protein (TSA)/Alkyl hydroperoxide peroxidase C (AhpC) family. J Biol Chem 275:2924–2930

    Article  PubMed  CAS  Google Scholar 

  • Kim K, Kim IH, Lee KY, Rhee SG, Stadtman ER (1988) The isolation and purification of a specific “protector” protein which inhibits enzyme inactivation by a thiol/Fe(III)/O2 mixed-function oxidation system. J Biol Chem 263:4704–4711

    PubMed  CAS  Google Scholar 

  • Kim SJ, Woo JR, Hwang YS, Jeong DG, Shin DH, Kim K, Ryu SE (2003) The tetrameric structure of Haemophilus influenza hybrid PRX5 reveals interactions between electron donor and acceptor proteins. J Biol Chem 278:10790–10798

    Article  PubMed  CAS  Google Scholar 

  • Kitano K, Kita A, Hakoshima T, Niimura Y, Miki K (2005) Crystal structure of decameric peroxiredoxin (AhpC) from Amphibacillus xylanus. Proteins 59:644–647

    Article  PubMed  CAS  Google Scholar 

  • Kitano K, Niimura Y, Nishiyama Y, Miki K (1999) Stimulation of peroxidase activity by decamerization related to ionic strength: AhpC protein from Amphibacillus xylanus. J Biochem (Tokyo) 126:313–319

    CAS  Google Scholar 

  • Klatt P, Lamas S (2000) Regulation of protein function by S-glutathiolation in response to oxidative and nitrosative stress. Eur J Biochem 267:4928–4944

    Article  PubMed  CAS  Google Scholar 

  • Knoops B, Clippe A, Bogard C, Arsalane K, Wattiez R, Hermans C, Duconseille E, Falmagne P, Bernard A (1999) Cloning and characterization of AOEB166, a novel mammalian antioxidant enzyme of the peroxiredoxin family. J Biol Chem 274:30451–30458

    Article  PubMed  CAS  Google Scholar 

  • Kong W, Shiota S, Shi Y, Nakayama H, Nakayama K (2000) A novel peroxiredoxin of the plant Sedum lineare is a homologue of Escherichia coli bacterioferritin co-migratory protein (Bcp). Biochem J 351:107–114

    Article  PubMed  CAS  Google Scholar 

  • König J, Baier M, Horling F, Kahmann U, Harris G, Schürmann P, Dietz K (2002) The plant-specific function of 2-Cys peroxiredoxin-mediated detoxification of peroxides in the redox-hierarchy of photosynthetic electron flux. Proc Natl Acad Sci U S A 99:5738–5743

    Article  PubMed  CAS  Google Scholar 

  • König J, Lotte K, Plessow R, Brockhinke A, Baier M, Dietz K (2003) Reaction mechanism of plant 2-Cys peroxiredoxin. Role of the C terminus and the quaternary structure. J Biol Chem 278:24409–2442

    Article  PubMed  CAS  Google Scholar 

  • Koo KH, Lee S, Jeong SY, Kim ET, Kim HJ, Kim K, Song K, Chae HZ (2002) Regulation of thioredoxin peroxidase activity by C-terminal truncation. Arch Biochem Biophys 397:312–318

    Article  PubMed  CAS  Google Scholar 

  • Kristensen P, Rasmussen DE, Kristensen BI (1999) Properties of thiol-specific anti-oxidant protein or calpromotin in solution. Biochem Biophys Res Commun 262:127–131

    Article  PubMed  CAS  Google Scholar 

  • Li S, Peterson NA, Kim M, Kim C, Hung L, Yu M, Lekin T, Segelke BW, Lott JS, Baker EN (2005) Crystal Structure of AhpE from Mycobacterium tuberculosis, a 1-Cys peroxiredoxin. J Mol Biol 346:1035–1046

    Article  PubMed  CAS  Google Scholar 

  • Logan C, Mayhew SG (2000) Cloning, overexpression, and characterization of peroxiredoxin and NADH peroxiredoxin reductase from Thermus aquaticus. J Biol Chem 275:30019–30028

    Article  PubMed  CAS  Google Scholar 

  • Manevich Y, Feinstein SI, Fisher AB (2004) Activation of the antioxidant enzyme 1-CYS peroxiredoxin requires glutathionylation mediated by heterodimerization with π GST. Proc Natl Acad Sci U S A 101:3780–3785

    Article  PubMed  CAS  Google Scholar 

  • Mauléon VP, Espagne CM, Boucherie H, Lagniel G, Lopez S, Labarre J, Garin J, Lauquin GJ (2002) Identification in Saccharomyces cerevisiae of a new stable variant of alkyl hydroperoxide reductase 1 (Ahp1) induced by oxidative stress. J Biol Chem 277:4823–4830

    Article  CAS  Google Scholar 

  • Mizohata E, Sakai H, Fusatomi E, Terada T, Murayama K, Shirouzu M, Yokoyama S (2005) Crystal structure of an archaeal peroxiredoxin from the aerobic hyperthermophilic crenarchaeon Aeropyrum pernix K1. J Mol Biol 354:317–329

    Article  PubMed  CAS  Google Scholar 

  • Motohashi K, Kondoh A, Stumpp MT, Hisabori T (2001) Comprehensive survey of proteins targeted by chloroplast thioredoxin. Proc Natl Acad Sci U S A 98:11224–11229

    Article  PubMed  CAS  Google Scholar 

  • Mouaheb N, Thomas D, Verdoucq L, Monfort P, Meyer Y (1998) In vivo functional discrimination between plant thioredoxins by heterologous expression in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 95:3312–3317

  • Nakamura T, Yamamoto T, Inoue T, Matsumura H, Kobayashi A, Hagihara Y, Uegaki K, Ataka M, Kai Y, Ishikawa K (2006) Crystal structure of thioredoxin peroxidase from aerobic hyperthermophilic archaeon Aeropyrum pernix K1. Proteins, 62:822–826

    Article  PubMed  CAS  Google Scholar 

  • Noguera-Mazon VN, Lemoine J, Walker O, Rouhier N, Salvador A, Jacquot JP, Lancelin JM, Krimm I (2006) Glutathionylation induces the dissociation of 1-Cys D-peroxiredoxin non-covalent homodimer. J Biol Chem (in press)

  • Noguera V, Walker O, Rouhier N, Jacquot JP, Krimm I Lancelin JM (2005) NMR reveals a novel glutaredoxin-glutaredoxin interaction interface. J Mol Biol 353:629–641

    Article  PubMed  CAS  Google Scholar 

  • Papinutto E, Windle HJ, Cendron L, Battistutta R, Kelleher D, Zanotti G (2005) Crystal structure of alkyl hydroperoxide-reductase (AhpC) from Helicobacter pylori. Biochim Biophys Acta 1753:240–246

    PubMed  CAS  Google Scholar 

  • Park SG, Cha MK, Jeong W, Kim IH (2000) Distinct physiological functions of thiol peroxidase isoenzymes in Saccharomyces cerevisiae. J Biol Chem 275:5723–5732

    Article  PubMed  CAS  Google Scholar 

  • Parsonage D, Youngblood DS, Sarma GN, Wood ZA, Karplus PA, Poole LB (2005) Analysis of the link between enzymatic activity and oligomeric state in AhpC, a bacterial peroxiredoxin. Biochemistry 44:10583–10592

    Article  PubMed  CAS  Google Scholar 

  • Pauwels F, Vergauwen B, Vanrobaeys F, Devreese B, Beeumen JJV (2003) Purification and characterization of a chimeric enzyme from Haemophilus influenzae Rd that exhibits glutathione-dependent peroxidase activity. J Biol Chem 278:16658–16666

    Article  PubMed  CAS  Google Scholar 

  • Piñeyro MD, Pizarro JC, Lema F, Pritsch O, Cayota A, Bentley GA, Robello C (2005) Crystal structure of the tryparedoxin peroxidase from the human parasite Trypanosoma cruzi. J Struct Biol 150:11–22

    Google Scholar 

  • Poole LB, Godzik A, Nayeem A, Schmitt JD (2000) AhpF can be dissected into two functional units: tandem repeats of two thioredoxin-like folds in the N-terminus mediate electron transfer from the thioredoxin reductase-like C-terminus to AhpC. Biochemistry 39:6602–6615

    Article  PubMed  CAS  Google Scholar 

  • Rabilloud T, Heller M, Rigobello MP, Bindoli A, Aebersold R, Lunardi J (2001) The mitochondrial antioxidant defence system and its response to oxidative stress. Proteomics 1:1105–1110

    Article  PubMed  CAS  Google Scholar 

  • Rabilloud T, Heller M, Gasnier F, Luche S, Rey C, Aebersold R, Benahmed M, Louisot P, Lunardi J (2002) Proteomics analysis of cellular response to oxidative stress. Evidence for in vivo overoxidation of peroxiredoxins at their active site. J Biol Chem 277:19396–19401

    Article  PubMed  CAS  Google Scholar 

  • Radyuk SN, Klichko VI, Spinola B, Sohal RS, Orr WC (2001) The peroxiredoxin gene family in Drosophila melanogaster. Free Radic Biol Med 31:1090–1100

    Article  PubMed  CAS  Google Scholar 

  • Ralat LA, Manevich Y, Fisher AB, Colman RF (2006) Direct evidence for the formation of a complex between 1-cysteine peroxiredoxin and glutathione S-transferase π with activity changes in both enzymes. Biochemistry 45:360–372

    Article  PubMed  CAS  Google Scholar 

  • Rouhier N, Gelhaye E, Sautiere PE, Brun A, Laurent P, Tagu D, Gerard J, de Faÿ E, Meyer Y, Jacquot JP (2001) Isolation and characterization of a new peroxiredoxin from poplar sieve tubes that uses either glutaredoxin or thioredoxin as a proton donor. Plant Physiol 127:1299–1309

    Article  PubMed  CAS  Google Scholar 

  • Rouhier N, Jacquot JP (2002a) Plant peroxiredoxins: alternative hydroperoxide scavenging enzymes. Photosynth Res 74:259–268

    Article  CAS  Google Scholar 

  • Rouhier N, Gelhaye E, Jacquot JP (2002b) Glutaredoxin-dependent peroxiredoxin from poplar: protein-protein interaction and catalytic mechanism. J Biol Chem 277:13609–13614

    Article  CAS  Google Scholar 

  • Rouhier N, Jacquot JP (2003) Molecular and catalytic properties of a peroxiredoxin-glutaredoxin hybrid from Neisseria meningitidis. FEBS Lett 554:149–153

    Article  PubMed  CAS  Google Scholar 

  • Rouhier N, Gama F, Wingsle G, Gelhaye E, Gans P, Jacquot JP (2006) Engineering functional artificial hybrid proteins between poplar peroxiredoxin II and glutaredoxin or thioredoxin. Biochem Biophys Res Commun 341:1300–1308

    Article  PubMed  CAS  Google Scholar 

  • Sarma GN, Nickel C, Rahlfs S, Fischer M, Becker K, Karplus PA (2005) Crystal structure of a novel Plasmodium falciparum 1-Cys peroxiredoxin. J Mol Biol 346:1021–1034

    Article  PubMed  CAS  Google Scholar 

  • Schröder E, Ponting CP (1998) Evidence that peroxiredoxins are novel members of the thioredoxin fold superfamily. Protein Sci 7:2465–2468

    Article  PubMed  Google Scholar 

  • Schröder E, Littlechild JA, Lebedev AA, Errington N, Vagin AA, Isupov MN (2000) Crystal structure of decameric 2-Cys peroxiredoxin from human erythrocytes at 17. Å resolution Structure 8:605–615

    Google Scholar 

  • Seo MS, Kang SW, Kim K, Baines IC, Lee TH, Rhee SG (2000) Identification of a new type of mammalian peroxiredoxin that forms an intramolecular disulfide as a reaction intermediate. J Biol Chem 275:20346–20354

    Article  PubMed  CAS  Google Scholar 

  • Stehr M, Hecht HJ, Jäger T, Flohé L, Singh M (2006) Structure of the inactive variant C60S of Mycobacterium tuberculosis thiol peroxidase. Acta Crystallogr D Biol Crystallogr 62:563–567

    Article  PubMed  CAS  Google Scholar 

  • Sullivan DM, Wehr NB, Fergusson MM, Levine RL, Finkel T (2000) Identification of oxidant-sensitive proteins: TNF-α induces protein glutathiolation. Biochemistry 39:11121–11128

    Article  PubMed  CAS  Google Scholar 

  • Trivelli X, Krimm I, Ebel C, Verdoucq L, Mauléon VP, Chartier Y, Tsan P, Lauquin G, Meyer Y, Lancelin JM (2003) Characterization of the yeast peroxiredoxin Ahp1 in its reduced active and overoxidized inactive forms using NMR. Biochemistry 42:14139–14149

    Article  PubMed  CAS  Google Scholar 

  • Verdoucq L, Vignols F, Jacquot JP, Chartier Y, Meyer Y (1999) In vivo characterization of a thioredoxin h target protein defines a new peroxiredoxin family. J Biol Chem 274:19714–19722

    Article  PubMed  CAS  Google Scholar 

  • Vergauwen B, Pauwels F, Jacquemotte F, Meyer TE, Cusanovich MA, Bartsch RG, Beeumen JJV (2001) Characterization of glutathione amide reductase from Chromatium gracile Identification of a novel thiol peroxidase (PRX/Grx) fueled by glutathione amide redox cycling. J Biol Chem 276:20890–20897

    Article  PubMed  CAS  Google Scholar 

  • Vignols F, Bréhelin C, Kerjan YS, Thomas D, Meyer Y (2005) A yeast two-hybrid knockout strain to explore thioredoxin-interacting proteins in vivo. Proc Natl Acad Sci U S A 102:16729–16734

    Article  PubMed  CAS  Google Scholar 

  • Wagner E, Luche S, Penna L, Chevallet M, Dorsselaer AV, Wagner EL, Rabilloud T (2002) A method for detection of overoxidation of cysteines: peroxiredoxins are oxidized in vivo at the active-site cysteine during oxidative stress. Biochem J 366:777–785

    PubMed  CAS  Google Scholar 

  • Watabe S, Kohno H, Kouyama H, Hiroi T, Yago N, Nakazawa T (1994) Purification and characterization of a substrate protein for mitochondrial ATP-dependent protease in bovine adrenal cortex. J Biochem (Tokyo) 115:648–654

    CAS  Google Scholar 

  • Woo HA, Kang SW, Kim HK, Yang K, Chae HZ, Rhee SG (2003a) Reversible oxidation of the active site cysteine of peroxiredoxins to cysteine sulfinic acid. Immunoblot detection with antibodies specific for the hyperoxidized cysteine-containing sequence. J Biol Chem 278:47361–47364

    Article  CAS  Google Scholar 

  • Woo HA, Chae HZ, Hwang SC, Yang K, Kang SW, Kim K, Rhee SG (2003b) Reversing the inactivation of peroxiredoxins caused by cysteine sulfinic acid formation. Science 300:653–656

    Article  CAS  Google Scholar 

  • Wood ZA, Poole LB, Hantgan RR, Karplus PA (2002) Dimers to doughnuts: redox-sensitive oligomerization of 2-cysteine peroxiredoxins. Biochemistry 41:5493–5504

    Article  PubMed  CAS  Google Scholar 

  • Wood ZA, Schröder E, Harris JR, Poole LB (2003a) Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci 28:32–40

    Article  CAS  Google Scholar 

  • Wood ZA, Poole LB, Karplus PA (2003b) Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 300:650–653

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marc Lancelin.

Additional information

VNM is recipient of a PhD fellowship of the French Ministère de l’Enseignement Supérieur de la Recherche et des Nouvelles Technologies for the year 2003–2006 and the Research Doctorate School of Chemistry of Lyon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noguera-Mazon, V., Krimm, I., Walker, O. et al. Protein–protein interactions within peroxiredoxin systems. Photosynth Res 89, 277–290 (2006). https://doi.org/10.1007/s11120-006-9106-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-006-9106-4

Keywords

Navigation