Skip to main content

Advertisement

Log in

Multispectral images for monitoring the physiological parameters of coffee plants under different treatments against nematodes

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

The coffee crops are exposed to different pathogens that directly affect yield. These include nematodes, which attack the roots of plants and compromise their physiological development. Given the losses caused by this pathogen and the lack of information on spatial distribution in infested areas, it is important to adopt technologies that enable crops under different management systems to be monitored during their growth cycle. The remote sensing associated with machine learning algorithms is presented as a potential tool for monitoring agricultural crops. The present study assesses different machine learning algorithms, using radiometric values of multispectral images as input datasets, and identifies the best algorithms, to estimate the physiological agronomic parameters in coffee crops submitted to 11 treatments for nematode management. Based on the association between the images taken by a low-cost camera (bands: (R) red, (G) green and (B) blue) mounted on a remotely piloted aircraft (RPA), machine learning algorithms (Random Forest (RF) and support-vector machines (SVM)), the results made it possible to estimate with satisfactory accuracy (root mean square error (RMSE) less than 26.5% the main physical parameters of coffee plants: chlorophyll, plant height, branch length, number of branches and number of nodes per branch. With Planet satellite-derived multispectral bands, the SVM algorithm estimated plant canopy diameters with an RMSE of 7.74%. Based on the spatial distribution maps of the physical parameters, the application machine learning methods offered an opportunity to better use remote sensing data for monitoring coffee crop growth conditions and accurately guiding several management techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Aalten, P. M., Vitour, D., Blanvillain, D., Gowen, S. R., & Sutra, L. (1998). Effect of rhizosphere fluorescent Pseudomonas strains on plant-parasitic nematodes Radopholus similis and Meloidogyne spp. Letters Applied Microbiology, 27(6), 357–361. https://doi.org/10.1046/j.1472-765X.1998.00440.x

    Article  Google Scholar 

  • Abdulridha, J., Ehsani, R., Abd-Elrahman, A., & Ampatzidis, Y. (2019). A remote sensing technique for detecting laurel wilt disease in avocado in presence of other biotic and abiotic stresses. Computers and Electronics in Agriculture, 156, 549–557. https://doi.org/10.1016/j.compag.2018.12.018

    Article  Google Scholar 

  • Alves, H. M. R., Volpato, M. M. L., Vieira, T. G. C., Maciel, D. A., Gonçalves, T. G., & Dantas, M. F. (2016). Characterization and spectral monitoring of coffee lands in Brazil. The International Archives of the Photogrammetry, 8. https://doi.org/10.5194/isprsarchives-XLI-B8-801-2016. Remote Sensing and Spatial Information Sciences. XLI-B

  • Amaral, J. A. T., Matta, F. M. da, & Rena, A. B. (2001). Effects of fruiting on the growth of Arabica coffee trees as related to carbohydrate and nitrogen status and to nitrate reductase activity. Revista Brasileira de Fisiologia Vegetal, 13(1), 66–74. https://doi.org/10.1590/S0103-31312001000100008

  • Arantes, B. H. T., Moraes, V. H., Geraldine, A. M., Alves, T. M., Albert, A. M., Silva, G. J. da, & Castoldi, G. (2021). Spectral detection of nematodes in soybean at flowering growth stage using unmanned aerial vehicles. Ciência Rural, 51(5). https://doi.org/10.1590/0103-8478cr20200283

  • Bocca, F. F., & Rodrigues, L. H. A. (2016). The effect of tuning, feature engineering, and feature selection in data mining applied to rainfed sugarcane yield modeling. Computers and Electronics in Agriculture, 128, 67–76. https://doi.org/10.1016/j.compag.2016.08.015

    Article  Google Scholar 

  • Boisseau, M., Aribi, J., de Sousa, F. R., Carneiro, R. M. D. G., & Anthony, F. (2009). Resistance to Meloidogyne paranaensis in wild Coffea Arabica. Tropical Plant Pathology, 34 (1). https://doi.org/10.1590/S1982-56762009000100006

  • Breiman, L. (2001). Random Forests. Machine Learning Springer, 45, 5–32. https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  • Bunruang, P., & Kaewplang, S. (2021). Evaluation of Sugarcane Plant Height using UAV Remote Sensing. Engineering Access, 7(2), 98–102. https://doi.org/10.14456/mijet.2021.15

    Article  Google Scholar 

  • Campos, V. P., & Silva, J. R. (2008). Management of Meloidogyne spp. in Coffee Plantations. In R. M. Souza (Ed.), Plant-Parasitic Nematodes of Coffee (pp. 165–190). Dordrecht: Springer. https://doi.org/10.1007/978-1-4020-8720-2_8

    Chapter  Google Scholar 

  • Carmona, F., Rivas, R., & Fonnegra, D. C. (2015). Vegetation Index to estimate chlorophyll content from multispectral remote sensing data. European Journal of Remote Sensing, 48(1), 319–326. https://doi.org/10.5721/EuJRS20154818

    Article  Google Scholar 

  • Chemura, A., Mutanga, O., & Odindi, J. (2017). Empirical Modeling of Leaf Chlorophyll Content in Coffee (Coffea Arabica) Plantations with Sentinel-2 MSI Data: Effects of Spectral Settings, Spatial Resolution, and Crop Canopy Cover. IEEE Journal of selected topics in applied earth observations and remote sensing, 10(12), 5541–5550. https://doi.org/10.1109/JSTARS.2017.2750325

    Article  Google Scholar 

  • Chitwood, D. J. (2002). Phytochemical based strategies for nematode control. Annual Review of Phytopathology, 40, 221–249. https://doi.org/10.1146/annurev.phyto.40.032602.130045

    Article  PubMed  CAS  Google Scholar 

  • Cronin, D., Dowling, D. N., Dunne, C., Fenton, A., Moenne-Loccoz, Y., & O’gara, F. (1997). Role of 2,4-Diacetylphloroglucinol in the Interactions of the Biocontrol Pseudomonad Strain F113 with the Potato Cyst Nematode Globodera rostochiensis. ASM Journals - Applied and Environmental Microbiology, 63(4), https://doi.org/10.1128/aem.63.4.1357-1361.1997

  • Diao, C. (2020). Remote sensing phenological monitoring framework to characterize corn and soybean physiological growing stages. Remote Sensing of Environment, 248. https://doi.org/10.1016/j.rse.2020.111960

  • Ferraz, L. C. (2008). Brazil. In R. M. Souza (Ed.), Plant-Parasitic Nematodes of Coffee (pp. 225–248). Dordrecht: Springer. https://doi.org/10.1007/978-1-4020-8720-2_12

    Chapter  Google Scholar 

  • Green, D. R., Hagon, J. J., Gómez, C., & Gregory, B. J. (2019). Using Low-Cost UAVs for Environmental Monitoring, Mapping, and Modelling: examples from the coastal zone. Coastal Management - Elsevier, 21, 465–501. https://doi.org/10.1016/b978-0-12-810473-6.00022-4

    Article  Google Scholar 

  • Hashem, A., Tabassum, B., & AbdAllah, E. F. (2019). Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi Journal of Biological Sciences, 26(6), 1291–1297. https://doi.org/10.1016/j.sjbs.2019.05.004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jensen, J. R. (2009). Remote Sensing of the Environment: An Earth Resource Perspective (2nd Edition). Pearson Education India. New Delhi

  • Jia, M., Colombo, R., Rossini, M., Celesti, M., Zhu, J., Cogliati, Cheng, T. … Yao, X. (2021). Estimation of leaf nitrogen content and photosynthetic nitrogen use efficiency in wheat using sun-induced chlorophyll fluorescence at the leaf and canopy scales. European Journal of Agronomy, 122. https://doi.org/10.1016/j.eja.2020.126192

  • Lee, H., Wang, J., & Leblon, B. (2020). Using Linear Regression, RFs, and Support Vector Machine with Unmanned Aerial Vehicle Multispectral Images to Predict Canopy Nitrogen Weight in Corn. Remote Sensing, 12(13), 2071. https://doi.org/10.3390/rs12132071

  • Liu, Z., Budiharjo, A., Wang, P., Shi, H., Fang, J., Borriss, R. … Huang, X. (2013). The highly modified microcin peptide plantazolicin is associated with nematicidal activity of Bacillus amyloliquefaciens FZB42. Applied genetics and molecular biotechnology. 97,10081–10090. https://doi.org/10.1007/s00253-013-5247-5

  • Marin-Bruzos, M., & Grayston, S. (2019). Biological Control of Nematodes by Plant Growth Promoting Rhizobacteria: Secondary Metabolites Involved and Potential Applications. In H. B. Singh, C. Keswani, M. S. Reddy, E. Sansinenea, & C. García-Estrada (Eds.), Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms (pp. 253–264). Singapore: Springer. https://doi.org/10.1007/978-981-13-5862-3_13

    Chapter  Google Scholar 

  • Martins, G. D., Galo, M. L. B. T., & Vieira, B. S. (2017). Detecting and mapping root-knot nematode infection in coffee crop using remote sensing measurements. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(12), 5395–5403. https://doi.org/10.1109/JSTARS.2017.2737618

    Article  Google Scholar 

  • Martins, J. A., Fiorio, P. R., Barros, P. P. da, Demattê, S., Molin, J. A. M., Cantarella, J. P., H., & Neale, C. M. U. (2020). Potential use of hyperspectral data to monitor sugarcane nitrogen status. Acta Scientiarum. Agronomy, 43. https://doi.org/10.4025/actasciagron.v43i1.47632

  • Mhatre, P. H., Karthik, C., Kadirvelu, K., Divya, K. L., Venkatasalam, E. P., Srinivasan, S. … Shanmuganathan, R. (2019). Plant growth promoting rhizobacteria (PGPR): A potential alternative tool for nematodes bio-control. Biocatalysis and agricultural biotechnology, 17, 119–128. https://doi.org/10.1016/j.bcab.2018.11.009

    Article  Google Scholar 

  • Muniz, M. F., Carneiro, R., Almeida, M. R., Campos, V. P., & Castagnone-Sereno, P. (2008). Diversity of Meloidogyne exigua (Tylenchida: Meloidogynidae) populations from coffee and rubber tree. Nematology, 10(6), 897–910. https://doi.org/10.1163/156854108786161418. & Cunha e Castro, J. M. da

    Article  CAS  Google Scholar 

  • Ndikumana, E., Minh, D. H. T., Nguyen, H. T. D., Baghdadi, D. C., Hossard, L., & Moussawi, I. (2018). Estimation of Rice Height and Biomass Using Multitemporal SAR Sentinel-1 for Camargue, Southern France. Remote Sensing, 10(9), 1394. https://doi.org/10.3390/rs10091394

    Article  Google Scholar 

  • Oliveira, M. F., Santos, A. F. de, Lacerda, L. N., Silva, R. P. da, & Vellidis, G. (2019). Estimation of peanut maturation using remote sensing and artificial neural networks. Annals of the XVI Meeting of Peanut Culture, 3. https://doi.org/10.17648/amendoim-2019-107243

  • Platt, J. C. (1999). Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods. Advances In Large Margin Classifiers, 10, 61–74. http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.1639

    Google Scholar 

  • Pompelli, M. F., Martins, S. C. V., Antunes, W. C., Chaves, A. R. M., & Matta, F. M. (2010). da. Photosynthesis and photoprotection in coffee leaves is affected by nitrogen and light availabilities in winter conditions. Journal of Plant Physiology, 167(13) 1052–1060. https://doi.org/10.1016/j.jplph.2010.03.001

  • Ranđelović, P., Đorđević, V., Milić, S., Balešević-Tubić, S., Petrović, K., Miladinović, J., & Đukić, V. (2020). Prediction of soybean plant density using a machine learning model and vegetation indices extracted from RGB images taken with a UAV. Agronomy, 10, 1108. https://doi.org/10.3390/agronomy10081108

  • Salamanca-Jimenez, A., Doane, T. A., & Horwath, W. R. (2017). Coffee response to nitrogen and soil water content during the early growth stage. Journal of Plant Nutrition and Soil Science, 180(5), 614–623. https://doi.org/10.1002/jpln.201600601

    Article  CAS  Google Scholar 

  • Sharifi, A. (2021). Yield prediction with machine learning algorithms and satellite images. Journal of the Science of Food and Agriculture, 101, 891–896. https://doi.org/10.1002/jsfa.10696

    Article  PubMed  CAS  Google Scholar 

  • Shevade, S. K., Keerthi, S. S., Bhattacharyya, C., & Murthy, K. R. K. (2000). Improvements to the SMO Algorithm for SVM Regression. IEEE Transactions On Neural Networks, 11(5), https://doi.org/10.1.1.146.375&rep=rep1&type=pdf

  • Sheykhmousa, M., Mahdianpari, M., Ghanbari, H., Mohammadimanesh, F., Ghamisi, P., & Homayouni, S. (2020). Support Vector Machine Versus RF for Remote Sensing Image Classification: A Meta-Analysis and Systematic Review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 6308–6325. https://doi.org/10.1109/JSTARS.2020.3026724

    Article  Google Scholar 

  • Singhal, G., Bansod, B., Mathew, L., Goswami, J., Choudhury, B. U., & Raju, P. L. N. (2019). Chlorophyll estimation using multi-spectral unmanned aerial system based on machine learning techniques. Remote Sensing Applications: Society and Environment, 15. https://doi.org/10.1016/j.rsase.2019.100235

  • Sousa, I. C., Nascimento, M., Silva, G. N., Nascimento, A. C. C., Cruz, C. D., Silva, F. F. … Caixeta, E. T. (2021). Genomic prediction of leaf rust resistance to Arabica coffee using machine learning algorithms. Scientia Agricola, 78(4), https://doi.org/10.1590/1678-992x-2020-0021

  • Tolardo, A. L., Alves, G. C. S., Silva, G. F., da, Pereira, W. J., Silva, D. Z. da, & Silva, S. A. S. (2019). Biological control: isolated and in mixtures and genetic control of Meloidogyne exigua in coffee. Coffee Science, 14(2), 147–156. https://doi.org/10.25186/cs.v14i2

  • Villain, L., Sarah, J. L., Hernández, A., Bertrand, B., Anthony, F., Lashermes, P. … Carneiro, R. M. D. G. (2013). Diversity of root-knot nematodes parasiting coffee in Central America. Nematropica, 43, 194–206. https://journals.flvc.org/nematropica/article/view/82708

    Google Scholar 

  • Wager, S., & Athey, S. (2018). Estimation and Inference of Heterogeneous Treatment Effects using Random Forests. Journal of the American Statistical Association, 113, 1228–1242. https://doi.org/10.1080/01621459.2017.1319839

    Article  CAS  Google Scholar 

  • Xiao, T., Tan, S., Shen, Q., & Ran, W. (2012). Bacillus cereus X5 suppresses root-knot nematode of tomato by colonizing in roots and soil. African Journal of Microbiology Research, 6(10), 2321–2327. https://doi.org/10.5897/AJMR11.1244

    Article  Google Scholar 

  • Zerbato, C., Rosalen, D. L., Furlani, C. E. A., Deghaid, J., & Voltarelli, M. A. (2016). Agronomic characteristics associated with the normalized difference vegetation index (NDVI) in the peanut crop. Australian Journal of Crop Science, 10(5), 758–764. https://doi.org/10.21475/ajcs.2016.10.05.p7167

    Article  Google Scholar 

  • Zha, H., Miao, Y., Wang, T., LI, Y., Zhang, J., Sun, W. … Kusnierek, K. (2020). Improving Unmanned Aerial Vehicle Remote Sensing-Based Rice Nitrogen Nutrition Index Prediction with Machine Learning. Remote Sensing, 12, 215. https://doi.org/10.3390/rs12020215

    Article  Google Scholar 

  • Zhou, C., Ye, H., Xu, Z., Hu, J., Shi, X., Hua, S. … Yang, G. (2019). Estimating Maize-Leaf Coverage in Field Conditions by Applying a Machine Learning Algorithm to UAV Remote Sensing Images. Applied Sciences, 9, 2389. https://doi.org/10.3390/app9112389

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Vasconcelos Pereira.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, F.V., Martins, G.D., Vieira, B.S. et al. Multispectral images for monitoring the physiological parameters of coffee plants under different treatments against nematodes. Precision Agric 23, 2312–2344 (2022). https://doi.org/10.1007/s11119-022-09922-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-022-09922-2

Keywords

Navigation