Skip to main content

Advertisement

Log in

Integrating geospatial data and cropping system simulation within a geographic information system to analyze spatial seed cotton yield, water use, and irrigation requirements

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

The development of sensors that provide geospatial information on crop and soil conditions has been a primary success for precision agriculture. However, further developments are needed to integrate geospatial data into computer algorithms that spatially optimize crop production while considering potential environmental impacts and resource limitations. The objective of this research was to combine several information technologies, including remote sensing, a cropping system model, and a geographic information system (GIS), to synthesize and interpret geospatial data collected during two irrigation scheduling experiments conducted in 2009 and 2011 in a 5-ha cotton field in central Arizona. The Geospatial Simulation (GeoSim) plug-in for Quantum GIS was used to manage geospatial data and conduct site-specific simulations with the CSM-CROPGRO-Cotton model. Simulated annealing optimization was used to adjust five model parameters to simulate site-specific conditions in 320 zones across the field. Using input parameters for GeoSim, a multiple criteria objective function was developed to incorporate measured and simulated leaf area index (LAI), crop canopy height, seed cotton yield, and evapotranspiration (ET) for site-specific optimization of CSM-CROPGRO-Cotton. Parameter identifiability and equifinality issues associated with model inversion were investigated. The optimized model was used for post hoc analysis of irrigation rates that maximized site-specific irrigation water use efficiency. With spatial optimization, the model was able to simulate LAI with root mean squared errors (RMSE) of 15 and 8 % in the 2009 and 2011 experiments, respectively. The RMSEs between measured and simulated canopy height, seed cotton yield, and ET were 5 % or less in both seasons. Some parameters were more identifiable than others during model inversions. Multiple temporal estimates of LAI were effective for constraining the model’s specific leaf area parameter (SLAVR, cm2 g−1), but lack of information on root growth reduce identifiability of a parameter related to that process (SRGF0). Post-hoc simulation analysis of irrigation management options showed that irrigation schedules based on remotely sensed vegetation indices increased irrigation water use efficiency as compared to traditional scheduling methods, particularly in the 2009 growing season. In 2011, the analysis showed that all scheduling methods resulted in excess irrigation application, and higher deep seepage rates were simulated in that season. Taken together, the results demonstrate that well-designed software tools and algorithms for data processing and interpretation can be potentially transformative for integrating multiple geospatial data sets to compute optimum scenarios for precision irrigation management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allen, R. G., Pereira, L. S., Raes, D., & Smith. M. (1998). Crop evapotranspiration—Guidelines for computing crop water requirements—FAO Irrigation and Drainage Paper 56. Food and Agriculture Organization of the United Nations, Rome, Italy. Available online at http://www.fao.org/docrep/x0490e/x0490e00.HTM. Accessed 22 May 2014.

  • Anothai, J., Soler, C. M. T., Green, A., Trout, T. J., & Hoogenboom, G. (2013). Evaluation of two evapotranspiration approaches simulated with the CSM-CERES-Maize model under different irrigation strategies and the impact on maize growth, development, and soil moisture content for semi-arid conditions. Agricultural and Forest Meteorology, 176(1), 64–76.

    Article  Google Scholar 

  • Baumhardt, R. L., Staggenborg, S. A., Gowda, P. H., Colaizzi, P. D., & Howell, T. A. (2009). Modeling irrigation management strategies to maximize cotton lint yield and water use efficiency. Agronomy Journal, 101(3), 460–468.

    Article  Google Scholar 

  • Bautista, E., Clemmens, A. J., Strelkoff, T. S., & Schlegel, J. (2009). Modern analysis of surface irrigation systems with WinSRFR. Agricultural Water Management, 96(7), 1146–1154.

    Article  Google Scholar 

  • Boote, K. J., & Pickering, N. B. (1994). Modeling photosynthesis of row crop canopies. HortScience, 29(12), 1423–1434.

    Google Scholar 

  • Calmon, M. A., Jones, J. W., Shinde, D., & Specht, J. E. (1999). Estimating parameters for soil water balance models using adaptive simulated annealing. Applied Engineering in Agriculture, 15(6), 703–713.

    Article  Google Scholar 

  • Cammarano, D., Payero, J., Basso, B., Wilkens, P., & Grace, P. (2012). Agronomic and economic evaluation of irrigation strategies on cotton lint yield in Australia. Crop & Pasture Science, 63(7), 647–655.

    Article  Google Scholar 

  • Camp, C. R., Sadler, E. J., Evans, D. E., Usrey, L. J., & Omary, M. (1998). Modified center pivot system for precision management of water and nutrients. Applied Engineering in Agriculture, 14(1), 23–31.

    Article  Google Scholar 

  • Charoenhirunyingyos, S., Honda, K., Kamthonkiat, D., & Ines, A. V. M. (2011). Soil moisture estimation from inverse modeling using multiple criteria functions. Computers and Electronics in Agriculture, 75(2), 278–287.

    Article  Google Scholar 

  • Chávez, J. L., Pierce, F. J., Elliott, T. V., & Evans, R. G. (2010). A remote irrigation monitoring and control system for continuous move systems. Part A: description and development. Precision Agriculture, 11(1), 1–10.

    Article  Google Scholar 

  • DeJonge, K. C., Ascough, J. C, I. I., Andales, A. A., Hansen, N. C., Garcia, L. A., & Arabi, M. (2012). Improving evapotranspiration simulations in the CERES-Maize model under limited irrigation. Agricultural Water Management, 115, 92–103.

    Article  Google Scholar 

  • DeJonge, K. C., Kaleita, A. L., & Thorp, K. R. (2007). Simulating the effects of spatially variable irrigation on corn yields, costs, and revenue in Iowa. Agricultural Water Management, 92(1–2), 99–109.

    Article  Google Scholar 

  • El Nahry, A. H., Ali, R. R., & El Baroudy, A. A. (2011). An approach for precision farming under pivot irrigation system using remote sensing and GIS techniques. Agricultural Water Management, 98(4), 517–531.

    Article  Google Scholar 

  • Evans, R. G., & King, B. A. (2012). Site-specific sprinkler irrigation in a water-limited future. Transactions of the ASABE, 55(2), 493–504.

    Article  Google Scholar 

  • Farquhar, G. D., Von Caemmerer, S., & Berry, J. A. (1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149(1), 78–90.

    Article  CAS  PubMed  Google Scholar 

  • French, A. N., Hunsaker, D. J., & Thorp, K. R. (2015). Remote sensing of evapotranspiration over cotton using the TSEB and METRIC energy balance models. Remote Sensing of Environment, 158, 281–294.

    Article  Google Scholar 

  • Gee, G. W., & Bauder, J. W. (1986). Particle-size analysis. In A. Klute (Ed.), Methods of soil analysis, Part I. Madison: American Society of Agronomy.

    Google Scholar 

  • Godwin, D. C., & Singh, U. (1998). Nitrogen balance and crop response to nitrogen in upland and lowland cropping systems. In G. Y. Tsuji, G. Hoogenboom, & P. K. Thornton (Eds.), Understanding options for agricultural production (pp. 55–77). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Hadria, R., Duchemin, B., Lahrouni, A., Khabba, S., Er-Raki, S., Dedieu, G., et al. (2006). Monitoring of irrigated wheat in a semi-arid climate using crop modelling and remote sensing data: Impact of satellite revisit time frequency. International Journal of Remote Sensing, 27(5–6), 1093–1117.

    Article  Google Scholar 

  • Heinemann, A. B., Hoogenboom, G., & De Faria, R. T. (2002). Determination of spatial water requirements at county and regional levels using crop models and GIS: An example for the State of Parana, Brazil. Agricultural Water Management, 52(3), 177–196.

    Article  Google Scholar 

  • Hood, C. P., McClendon, R. W., & Hook, J. E. (1987). Computer analysis of soybean irrigation management strategies. Transactions of the ASAE, 30(2), 417–423.

    Article  Google Scholar 

  • Hoogenboom, G., Jones, J. W., Wilkens, P. W., Porter, C. H., Boote, K. J., Hunt, L. A., Singh, U., Lizaso, J. L., White, J. W., Uryasev, O., Royce, F. S., Ogoshi, R., Gijsman, A. J., Tsuji, G. Y., & Koo, J. (2012). Decision support system for agrotechnology transfer (DSSAT). Version 4.5.1.005 [CD-ROM]. University of Hawaii, Honolulu, Hawaii.

  • Hook, J. E. (1994). Using crop models to plan water withdrawals for irrigation in drought years. Agricultural Systems, 45(3), 271–289.

    Article  Google Scholar 

  • Hunsaker, D. J., Barnes, E. M., Clarke, T. R., Fitzgerald, G. J., & Pinter, P. J. (2005). Cotton irrigation scheduling using remotely sensed and FAO-56 basal crop coefficients. Transactions of the ASAE, 48(4), 1395–1407.

    Article  Google Scholar 

  • Hunsaker, D. J., Clemmens, A. J., & Fangmeier, D. D. (1999). Cultural and irrigation management effects on infiltration, soil roughness, and advance in furrowed level basins. Transactions of the ASAE, 42(6), 1753–1762.

    Article  Google Scholar 

  • Hunsaker, D. J., French, A. N., Waller, P. M., Bautista, E., Thorp, K. R., & Andrade-Sanchez, P. (2015). Irrigation scheduling using spatial information in real-time: An evaluation with cotton grown under surface irrigation. Irrigation Science, in review.

  • Hunsaker, D. J., Pettit, D. E., & Clemmens, A. J. (2011). A self-contained probe for measuring water advance and recession times in surface-irrigated fields. Applied Engineering in Agriculture, 27(5), 729–736.

    Article  Google Scholar 

  • Ines, A. V. M., Gupta, A. D., & Loof, R. (2002). Application of GIS and crop growth models in estimating water productivity. Agricultural Water Management, 54(3), 205–225.

    Article  Google Scholar 

  • Irmak, A., Jones, J. W., Batchelor, W. D., & Paz, J. O. (2001). Estimating spatially variable soil properties for application of crop models in precision farming. Transactions of the ASAE, 44(5), 1343–1353.

    Article  Google Scholar 

  • Jaynes, D. B., & Hunsaker, D. J. (1989). Spatial and temporal variability of water content and infiltration on a flood irrigated field. Transactions of the ASAE, 32(4), 1229–1238.

    Article  Google Scholar 

  • Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D., Hunt, L. A., et al. (2003). The DSSAT cropping system model. European Journal of Agronomy, 18(3–4), 235–265.

    Article  Google Scholar 

  • Ju, W., Gao, P., Wang, J., Zhou, Y., & Zhang, X. (2010). Combining an ecological model with remote sensing and GIS techniques to monitor soil water content of croplands with a monsoon climate. Agricultural Water Management, 97(8), 1221–1231.

    Article  Google Scholar 

  • Kranz, W. L., Evans, R. G., Lamm, F. R., O’Shaughnessy, S. A., & Peters, R. T. (2012). A review of mechanical move sprinkler irrigation control and automation technologies. Applied Engineering in Agriculture, 28(3), 389–397.

    Article  Google Scholar 

  • Liu, J. (2009). A GIS-based tool for modelling large-scale crop-water relations. Environmental Modelling and Software, 24(3), 411–422.

    Article  Google Scholar 

  • Luo, Y., Weng, E., Wu, X., Gao, C., Zhou, X., & Zhang, L. (2009). Parameter identifiability, constraint, and equifinality in data assimilation with ecosystem models. Ecological Applications, 19(3), 571–574.

    Article  PubMed  Google Scholar 

  • Mauget, S., Leiker, G., & Nair, S. (2013). A web application for cotton irrigation management on the U.S. Southern High Plains. Part I: Crop yield modeling and profit analysis. Computers and Electronics in Agriculture, 99, 248–257.

    Article  Google Scholar 

  • McCarthy, A. C., Hancock, N. H., & Raine, S. R. (2010). VARIwise: A general-purpose adaptive control simulation framework for spatially and temporally varied irrigation at sub-field scale. Computers and Electronics in Agriculture, 70(1), 117–128.

    Article  Google Scholar 

  • McKinion, J. M., Jenkins, J. N., Akins, D., Turner, S. B., Willers, J. L., Jallas, E., & Whisler, F. D. (2001). Analysis of a precision agriculture approach to cotton production. Computers and Electronics in Agriculture, 32(3), 213–228.

    Article  Google Scholar 

  • Mo, X., Liu, S., Lin, Z., Xu, Y., Xiang, Y., & McVicar, T. R. (2005). Prediction of crop yield, water consumption and water use efficiency with a SVAT-crop growth model using remotely sensed data on the North China Plain. Ecological Modelling, 183(2–3), 301–322.

    Article  Google Scholar 

  • Monaghan, J. M., Daccache, A., Vickers, L. H., Hess, T. M., Weatherhead, E. K., Grove, I. G., & Knox, J. W. (2013). More ‘crop per drop’: Constraints and opportunities for precision irrigation in European agriculture. Journal of the Science of Food and Agriculture, 93(5), 977–980.

    Article  CAS  PubMed  Google Scholar 

  • Nair, S., Maas, S., Wang, C., & Mauget, S. (2013). Optimal field partitioning for center-pivot-irrigated cotton in the Texas High Plains. Agronomy Journal, 105(1), 124–133.

    Article  Google Scholar 

  • Nearing, G. S., Crow, W. T., Thorp, K. R., Moran, M. S., Reichle, R. H., & Gupta, H. V. (2012). Assimilating remote sensing observations of leaf area index and soil moisture for wheat yield estimates: An observing system simulation experiment. Water Resources Research, 48, W05525. doi:10.1029/2011WR011420.

    Article  Google Scholar 

  • Paz, J. O., Batchelor, W. D., Colvin, T. S., Logsdon, S. D., Kaspar, T. C., & Karlen, D. L. (1998). Analysis of water stress effects causing spatial yield variability in soybeans. Transactions of the ASAE, 41(5), 1527–1534.

    Article  Google Scholar 

  • Pereira, L. S., Oweis, T., & Zairi, A. (2002). Irrigation management under water scarcity. Agricultural Water Management, 57(3), 175–206.

    Article  Google Scholar 

  • Rao, M. N., Waits, D. A., & Neilsen, M. L. (2000). A GIS-based modeling approach for implementation of sustainable farm management practices. Environmental Modelling and Software, 15(8), 745–753.

    Article  Google Scholar 

  • Ritchie, J. T. (1998). Soil water balance and plant water stress. In G. Y. Tsuji, G. Hoogenboom, & P. K. Thornton (Eds.), Understanding options for agricultural production (pp. 41–54). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Schaap, M. G., Leij, F. J., & Van Genuchten, M. T. (2001). ROSETTA: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. Journal of Hydrology, 251(3–4), 163–176.

    Article  Google Scholar 

  • Scotford, I. M., & Miller, P. C. H. (2004). Estimating tiller density and leaf area index of winter wheat using spectral reflectance and ultrasonic sensing techniques. Biosystems Engineering, 89(4), 395–408.

    Article  Google Scholar 

  • Seidl, M. S., Batchelor, W. D., & Paz, J. O. (2004). Integrating remotely sensed images with a soybean model to improve spatial yield simulation. Transactions of the ASAE, 47(6), 2081–2090.

    Article  Google Scholar 

  • Thorp, K. R., Ale, S., Bange, M. P., Barnes, E. M., Hoogenboom, G., Lascano, R. J., et al. (2014a). Development and application of process-based simulation models for cotton production: A review of past, present, and future directions. Journal of Cotton Science, 18(1), 1–38.

    Google Scholar 

  • Thorp, K. R., Barnes, E. M., Hunsaker, D. J., Kimball, B. A., White, J. W., Nazareth, V. J., & Hoogenboom, G. (2014b). Evaluation of CSM-CROPGRO-Cotton for simulating effects of management and climate change on cotton growth and evapotranspiration in an arid environment. Transactions of the ASABE, 57(6), 1627–1642.

    Google Scholar 

  • Thorp, K. R., Batchelor, W. D., Paz, J. O., Kaleita, A. L., & DeJonge, K. C. (2007). Using cross-validation to evaluate CERES-Maize yield simulations within a decision support system for precision agriculture. Transactions of the ASABE, 50(4), 1467–1479.

    Article  Google Scholar 

  • Thorp, K. R., Batchelor, W. D., Paz, J. O., Steward, B. L., & Caragea, P. C. (2006). Methodology to link production and environmental risks of precision nitrogen management strategies in corn. Agricultural Systems, 89(2–3), 272–298.

    Article  Google Scholar 

  • Thorp, K. R., & Bronson, K. F. (2013). A model-independent open-source geospatial tool for managing point-based environmental model simulations at multiple spatial locations. Environmental Modelling and Software, 50, 25–36.

    Article  Google Scholar 

  • Thorp, K. R., DeJonge, K. C., Kaleita, A. L., Batchelor, W. D., & Paz, J. O. (2008). Methodology for the use of DSSAT models for precision agriculture decision support. Computers and Electronics in Agriculture, 64(2), 276–285.

    Article  Google Scholar 

  • Thorp, K. R., Hunsaker, D. J., & French, A. N. (2010). Assimilating leaf area index estimates from remote sensing into the simulations of a cropping systems model. Transactions of the ASABE, 53(1), 251–262.

    Article  Google Scholar 

  • Thorp, K. R., Wang, G., West, A. L., Moran, M. S., Bronson, K. F., White, J. W., & Mon, J. (2012). Estimating crop biophysical properties from remote sensing data by inverting linked radiative transfer and ecophysiological models. Remote Sensing of Environment, 124, 224–233.

    Article  Google Scholar 

  • Walter, I. A., Allen, R. G., Elliott, R., Itenfisu, D., Brown, P., Jensen, M. E., Mecham, B., Howell, T. A., Snyder, R., Eching, S., Spofford, T., Hattendorf, M., Martin, D., Cuenca, R. H., & Wright, J. L. (2005). The ASCE Standardized Reference Evapotranspiration Equation. Final Report of the Task Committee on Standardization of Reference Evapotranspiration, Environmental and Water Resources Institute (EWRI), American Society of Civil Engineers (ASCE), Restin, Virginia. Available online at http://www.kimberly.uidaho.edu/water/asceewri/ascestzdetmain2005.pdf. Accessed 30 May 2014.

  • Zhang, K., Hilton, H. W., Greenwood, D. J., & Thompson, A. J. (2011). A rigorous approach of determining FAO56 dual crop coefficient using soil sensor measurements and inverse modeling techniques. Agricultural Water Management, 98(6), 1081–1090.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. R. Thorp.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thorp, K.R., Hunsaker, D.J., French, A.N. et al. Integrating geospatial data and cropping system simulation within a geographic information system to analyze spatial seed cotton yield, water use, and irrigation requirements. Precision Agric 16, 532–557 (2015). https://doi.org/10.1007/s11119-015-9393-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-015-9393-x

Keywords

Navigation