Skip to main content
Log in

Heat Kernel Upper Estimates for Symmetric Jump Processes with Small Jumps of High Intensity

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

We consider the following non-local operator

$$ \mathcal{A}f(x)=\lim\limits_{\varepsilon\to 0}\int_{\{y\in \mathbb{R}^d\colon |x-y|>\varepsilon\}}(f(y)-f(x))n(x,y)\,dh. $$

where

$$ n(x,y)\asymp \frac{1}{|x-y|^{d+2}\left(\ln\frac{2}{|x-y|}\right)^{1+\beta}}\ \textrm{ for }\ |x-y|\leq 1 $$

and β ∈ (0, 1]. We prove upper estimates for the transition density of the associated symmetric Markov jump process X. Examples of Lévy processes with generator of the type above are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barlow, M.T., Bass, R.F., Chen, Z.-Q., Kassmann, M.: Non-local Dirichlet forms and symmetric jump processes. Trans. Am. Math. Soc. 361, 1963–1999 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barlow, M.T., Grigor’yan, A., Kumagai, T.: Heat kernel upper bounds for jump processes and the first exit time. J. Für Reine und Angewandte Mathematik 626, 135–157 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bass, R.F., Levin, D.: Transition probabilities for symmetric jump processes. Trans. Am. Math. Soc. 354, 2933–2953 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bendikov, A., Coulhon, T., Saloff-Coste, L.: Ultracontractivity and embedding into l . Math. Ann. 337, 817–853 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bendikov, A., Maheux, P.: Nash type inequalities for fractional powers of non-negative self-adjoint operators. Trans. Am. Math. Soc. 357, 3085–3097 (2007)

    Article  MathSciNet  Google Scholar 

  6. Bertoin, J.: Lévy Processes. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  7. Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  8. Bouleau, N., Hirsch, F.: Dirichlet Forms and Analysis on Wiener Space. Walter de Gruyter, Berlin (1991)

    Book  MATH  Google Scholar 

  9. Carlen, E.A., Kusuoka, S., Stroock, D.W.: Upper bounds for symmetric Markov transition functions. Ann. Inst. Henri Poincaré-Probab. Stat. 23, 245–287 (1987)

    MathSciNet  Google Scholar 

  10. Chen, Z.-Q., Kim, P., Kumagai, T.: Weighted Poincaré inequality and heat kernel estimates for finite range jump processes. Math. Ann. 342, 833–883 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chen, Z.-Q., Kumagai, T.: Heat kernel estimates for stable-like processes on d-sets. Stoch. Process. Appl. 108(1), 27–62 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chen, Z.-Q., Kumagai, T.: Heat kernel estimates for jump processes of mixed types on metric measure spaces. Probab. Theory Relat. Fields 140, 277–317 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Coulhon, T.: Ultracontractivity and Nash type inequalities. J. Funct. Anal. 141, 510–539 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. Davies, E.B.: Explicit constants for Gaussian upper bounds on heat kernels. Am. J. Math. 109, 319–333 (1987)

    Article  MATH  Google Scholar 

  15. Davies, E.B.: Heat Kernels and Spectral Theory. Cambridge University Press, Cambridge (1989)

    Book  MATH  Google Scholar 

  16. Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov Processes. Walter de Gruyter, Berlin (1994)

    Book  MATH  Google Scholar 

  17. Kim, P., Song, R., Vondraček, Z.: Potential theory for subordinate Brownian motions revisited. arXiv:1102.1369 (2011, preprint)

  18. Knopova, V., Schilling, R.L.: Transition density estimates for a class of Lévy and Lévy-type processes. J. Theor. Probab. (2010) doi:10.1007/s10959-010-0300-0

  19. Meyer, P.-A.: Renaissance, recollements, mélanges, ralentissement de processus de Markov. Ann. Inst. Fourier 25, 464–497 (1975)

    Article  Google Scholar 

  20. Sato, K.-I.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  21. Schilling, R.L., Song, R., Vondraček, Z.: Bernstein Functions: Theory and Applications. Walter de Gruyter, Berlin (2010)

    MATH  Google Scholar 

  22. Šikić, H., Song, R., Vondraček, Z.: Potential theory of geometric stable processes. Probab. Theory Relat. Fields 135, 547–575 (2006)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ante Mimica.

Additional information

On leave from Department of Mathematics, University of Zagreb, Croatia.

Research supported in part by the MZOS Grant 037-0372790-2801 of the Republic of Croatia.

Research supported in part by German Science Foundation DFG via Internationales Graduiertenkolleg “Stochastics and Real World Models” and SFB 701.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mimica, A. Heat Kernel Upper Estimates for Symmetric Jump Processes with Small Jumps of High Intensity. Potential Anal 36, 203–222 (2012). https://doi.org/10.1007/s11118-011-9225-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-011-9225-1

Keywords

Mathematics Subject Classifications (2010)

Navigation