Skip to main content
Log in

Monotonicity and non-monotonicity results for sequential fractional delta differences of mixed order

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

We consider the discrete fractional sequential difference \(\Delta _{1+a-\mu }^{\nu }\Delta _a^{\mu }f(t)\), where \(t\in \mathbb {N}_{3-\mu -\nu +a}\), in two separate cases, where in each case we require that \(\mu +\nu \in (1,2)\). In the first case, we show that when \(\mu \in (0,1)\) and \(\nu \in (1,2)\) it follows that the condition \(\Delta _{1+a-\mu }^{\nu }\Delta _a^{\mu }f(t)\ge 0\) implies that f is an increasing map when we impose that \(f(a)\ge 0\), \(\Delta f(a)\ge 0\), and \(\Delta f(a+1)\ge 0\). On the other hand, when \(\mu \in (1,2)\) and \(\nu \in (0,1)\) we demonstrate that the situation is very different and that this type of monotonicity result only holds when restricted to a proper subregion of the \((\mu ,\nu )\)-parameter space coupled with some additional auxiliary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdeljawad, T.: Dual identities in fractional difference calculus within Riemann. Adv. Differ. Equ. 19, 10 (2013)

    MathSciNet  MATH  Google Scholar 

  2. Abdeljawad, T.: On delta and nabla Caputo fractional differences and dual identities. Discrete Dyn. Nat. Soc. Art. ID 406910, 12 (2013)

  3. Anastassiou, G.A.: Nabla discrete fractional calculus and nabla inequalities. Math. Comput. Model. 51, 562–571 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Atici, F.M., Acar, N.: Exponential functions of discrete fractional calculus. Appl. Anal. Discrete Math. 7, 343–353 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Atici, F.M., Eloe, P.W.: A transform method in discrete fractional calculus. Int. J. Differ. Equ. 2, 165–176 (2007)

    MathSciNet  Google Scholar 

  6. Atici, F.M., Eloe, P.W.: Discrete fractional calculus with the Nabla operator. Electron. J. Qual. Theory Differ. Equ., Special Edition I, p. 12 (2009)

  7. Atici, F.M., Eloe, P.W.: Initial value problems in discrete fractional calculus. Proc. Am. Math. Soc. 137, 981–989 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Atici, F.M., Eloe, P.W.: Two-point boundary value problems for finite fractional difference equations. J. Differ. Equ. Appl. 17, 445–456 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Atici, F.M., Eloe, P.W.: Linear systems of fractional nabla difference equations. Rocky Mt. J. Math. 41, 353–370 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Atici, F.M., Şengül, S.: Modeling with fractional difference equations. J. Math. Anal. Appl. 369, 1–9 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Atici, F.M., Uyanik, M.: Analysis of discrete fractional operators. Appl. Anal. Discrete Math. 9, 139–149 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Baoguo, J., Erbe, L., Goodrich, C.S., Peterson, A.: On the relation between delta and nabla fractional difference. Filomat 31, 1741–1753 (2017)

    Article  MathSciNet  Google Scholar 

  13. Erbe, L., Goodrich, C.S., Jia, B., Peterson, A.: Monotonicity results for delta fractional differences revisited. Math. Slovaca 67, 895–906 (2017)

  14. Bastos, N.R.O., Mozyrska, D., Torres, D.F.M.: Fractional derivatives and integrals on time scales via the inverse generalized Laplace transform. Int. J. Math. Comput. 11, 1–9 (2011)

    MathSciNet  Google Scholar 

  15. Dahal, R., Duncan, D., Goodrich, C.S.: Systems of semipositone discrete fractional boundary value problems. J. Differ. Equ. Appl. 20, 473–491 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dahal, R., Goodrich, C.S.: A monotonicity result for discrete fractional difference operators. Arch. Math. (Basel) 102, 293–299 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dahal, R., Goodrich, C.S.: Erratum to “R. Dahal, C. S. Goodrich, A monotonicity result for discrete fractional difference operators. Arch. Math. (Basel) 102 (2014), 293–299”. Arch. Math. (Basel) 104, 599–600 (2015)

  18. Dahal, R., Goodrich, C.S.: An almost sharp monotonicity result for discrete sequential fractional delta differences. J. Differ. Equ. Appl. 23, 1190–1203 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dahal, R., Drvol, S., Goodrich, C.S.: New monotonicity conditions in discrete fractional calculus with applications to extremality conditions. Analysis (Berlin) 37, 145–156 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Erbe, L., Goodrich, C.S., Jia, B., Peterson, A.: Survey of the qualitative properties of fractional difference operators: monotonicity, convexity, and asymptotic behavior of solutions. Adv. Differ. Equ. 2016, 43 (2016). doi:10.1186/s13662-016-0760-3

    Article  MathSciNet  Google Scholar 

  21. Ferreira, R.A.C.: Nontrivial solutions for fractional \(q\)-difference boundary value problems. Electron. J. Qual. Theory Differ. Equ. (70), 1–10 (2010)

  22. Ferreira, R.A.C.: Positive solutions for a class of boundary value problems with fractional \(q\)-differences. Comput. Math. Appl. 61, 367–373 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ferreira, R.A.C.: A discrete fractional Gronwall inequality. Proc. Am. Math. Soc. 140, 1605–1612 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ferreira, R.A.C.: Existence and uniqueness of solution to some discrete fractional boundary value problems of order less than one. J. Differ. Equ. Appl. 19, 712–718 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ferreira, R.A.C., Goodrich, C.S.: Positive solution for a discrete fractional periodic boundary value problem. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 19, 545–557 (2012)

    MathSciNet  MATH  Google Scholar 

  26. Goodrich, C.S.: Solutions to a discrete right-focal boundary value problem. Int. J. Differ. Equ. 5, 195–216 (2010)

    MathSciNet  Google Scholar 

  27. Goodrich, C.S.: On discrete sequential fractional boundary value problems. J. Math. Anal. Appl. 385, 111–124 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Goodrich, C.S.: On a first-order semipositone discrete fractional boundary value problem. Arch. Math. (Basel) 99, 509–518 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Goodrich, C.S.: A convexity result for fractional differences. Appl. Math. Lett. 35, 58–62 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Goodrich, C.S.: Systems of discrete fractional boundary value problems with nonlinearities satisfying no growth conditions. J. Differ. Equ. Appl. 21, 437–453 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Goodrich, C.S.: A note on convexity, concavity, and growth conditions in discrete fractional calculus with delta difference. Math. Inequal. Appl. 19, 769–779 (2016)

    MathSciNet  MATH  Google Scholar 

  32. Goodrich, C.S.: The relationship between discrete sequential fractional delta differences and convexity. Appl. Anal. Discrete Math. 10, 345–365 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Goodrich, C.S.: A sharp convexity result for sequential fractional delta differences. J. Differ. Equ. Appl. (2017). doi:10.1080/10236198.2017.1380635

  34. Goodrich, C.S.: A uniformly sharp monotonicity result for discrete fractional sequential differences. Arch. Math. (Basel). (2017). doi:10.1007/s00013-017-1106-4

  35. Goodrich, C., Peterson, A.C.: Discrete Fractional Calculus. Springer International Publishing, Berlin (2015). doi:10.1007/978-3-319-25562-0

    Book  MATH  Google Scholar 

  36. Holm, M.: Sum and difference compositions and applications in discrete fractional calculus. Cubo 13, 153–184 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Jia, B., Erbe, L., Peterson, A.: Two monotonicity results for nabla and delta fractional differences. Arch. Math. (Basel) 104, 589–597 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Jia, B., Erbe, L., Peterson, A.: Convexity for nabla and delta fractional differences. J. Differ. Equ. Appl. 21, 360–373 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Jia, B., Erbe, L., Jia, B., Peterson, A.: Some relations between the Caputo fractional difference operators and integer order differences. Electron. J. Differ. Equ. No. 163, pp. 1–7 (2015)

  40. Jia, B., Erbe, L., Peterson, A.: Asymptotic behavior of solutions of fractional nabla \(q\)-difference equations (submitted)

  41. Jia, B., Erbe, L., Peterson, A.: Comparison theorems and asymptotic behavior of solutions of discrete fractional equations. Electron. J. Qual. Theory Differ. Equ., Paper No. 89, p. 18 (2015)

  42. Jia, B., Erbe, L., Peterson, A.: Comparison theorems and asymptotic behavior of solutions of Caputo fractional equations. Int. J. Differ. Equ. 11, 163–178 (2016)

    MathSciNet  Google Scholar 

  43. Lizama, C., Murillo-Arcila, M.: \(\ell _p\)-maximal regularity for a class of fractional difference equations on UMD spaces: the case \(1<\alpha \le 2\). Banach J. Math. Anal. 11, 188–206 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  44. Lv, Z., Gong, Y., Chen, Y.: Multiplicity and uniqueness for a class of discrete fractional boundary value problems. Appl. Math. 59, 673–695 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  45. Sitthiwirattham, T., Tariboon, J., Ntouyas, S.K.: Boundary value problems for fractional difference equations with three-point fractional sum boundary conditions. Adv. Differ. Equ. No. 296, p. 13 (2013)

  46. Sitthiwirattham, T.: Existence and uniqueness of solutions of sequential nonlinear fractional difference equations with three-point fractional sum boundary conditions. Math. Methods Appl. Sci. 38, 2809–2815 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wu, G., Baleanu, D.: Discrete fractional logistic map and its chaos. Nonlinear Dyn. 75, 283–287 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  48. Xu, R., Zhang, Y.: Generalized Gronwall fractional summation inequalities and their applications. J. Inequal. Appl. No. 242, p. 10 (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher S. Goodrich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goodrich, C.S. Monotonicity and non-monotonicity results for sequential fractional delta differences of mixed order. Positivity 22, 551–573 (2018). https://doi.org/10.1007/s11117-017-0527-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11117-017-0527-4

Keywords

Mathematics Subject Classification

Navigation