Skip to main content
Log in

Borwein–Preiss vector variational principle

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

This article extends to the vector setting the results of our previous work Kruger et al. (J Math Anal Appl 435(2):1183–1193, 2016) which refined and slightly strengthened the metric space version of the Borwein–Preiss variational principle due to Li and Shi (J Math Anal Appl 246(1):308–319, 2000. doi:10.1006/jmaa.2000.6813). We introduce and characterize two seemingly new natural concepts of \(\varepsilon \)-minimality, one of them dependent on the chosen element in the ordering cone and the fixed “gauge-type” function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bao, T.Q., Mordukhovich, B.S.: Variational principles for set-valued mappings with applications to multiobjective optimization. Control Cybernet. 36(3), 531–562 (2007)

    MathSciNet  MATH  Google Scholar 

  2. Bednarczuk, E.M., Kruger, A.Y.: Error bounds for vector-valued functions: necessary and sufficient conditions. Nonlinear Anal. 75(3), 1124–1140 (2012). doi:10.1016/j.na.2011.05.098

    Article  MathSciNet  MATH  Google Scholar 

  3. Bednarczuk, E.M., Kruger, A.Y.: Error bounds for vector-valued functions on metric spaces. Vietnam J. Math. 40(2–3), 165–180 (2012)

    MathSciNet  MATH  Google Scholar 

  4. Bednarczuk, E.M., Przybyła, M.J.: The vector-valued variational principle in Banach spaces ordered by cones with nonempty interiors. SIAM J. Optim. 18(3), 907–913 (2007). doi:10.1137/060658989

    Article  MathSciNet  MATH  Google Scholar 

  5. Bednarczuk, E.M., Zagrodny, D.: Vector variational principle. Arch. Math. (Basel) 93(6), 577–586 (2009). doi:10.1007/s00013-009-0072-x

    Article  MathSciNet  MATH  Google Scholar 

  6. Bednarczuk, E.M., Zagrodny, D.: A smooth vector variational principle. SIAM J. Control Optim. 48(6), 3735–3745 (2010). doi:10.1137/090758271

    Article  MathSciNet  MATH  Google Scholar 

  7. Bonnel, H.: Remarks about approximate solutions in vector optimization. Pac. J. Optim. 5(1), 53–73 (2009)

    MathSciNet  MATH  Google Scholar 

  8. Borwein, J.M., Preiss, D.: A smooth variational principle with applications to subdifferentiability and to differentiability of convex functions. Trans. Am. Math. Soc. 303(2), 517–527 (1987). doi:10.2307/2000681

    Article  MathSciNet  MATH  Google Scholar 

  9. Borwein, J.M., Zhu, Q.J.: Techniques of Variational Analysis. Springer, New York (2005)

    MATH  Google Scholar 

  10. Borwein, J.M., Zhuang, D.: Super efficiency in vector optimization. Trans. Am. Math. Soc. 338(1), 105–122 (1993). doi:10.2307/2154446

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, G.Y., Huang, X.X., Yang, X.: Vector Optimization. Set-valued and Variational Analysis. Lecture Notes in Economics and Mathematical Systems, vol. 541. Springer, Berlin (2005)

  12. Deville, R., Godefroy, G., Zizler, V.: Smoothness and Renormings in Banach Spaces, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 64. Longman Scientific & Technical, Harlow (1993)

    MATH  Google Scholar 

  13. Deville, R., Ivanov, M.: Smooth variational principles with constraints. Arch. Math. (Basel) 69(5), 418–426 (1997). doi:10.1007/s000130050140

    Article  MathSciNet  MATH  Google Scholar 

  14. Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings. A view from Variational Analysis. Springer Series in Operations Research and Financial Engineering, 2nd edn. Springer, New York (2014)

    Google Scholar 

  15. Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fabian, M., Hájek, P., Vanderwerff, J.: On smooth variational principles in Banach spaces. J. Math. Anal. Appl. 197(1), 153–172 (1996). doi:10.1006/jmaa.1996.0013

    Article  MathSciNet  MATH  Google Scholar 

  17. Fabian, M., Mordukhovich, B.S.: Nonsmooth characterizations of Asplund spaces and smooth variational principles. Set Valued Anal. 6(4), 381–406 (1998). doi:10.1023/A:1008799412427

    Article  MathSciNet  MATH  Google Scholar 

  18. Finet, C., Quarta, L., Troestler, C.: Vector-valued variational principles. Nonlinear Anal. 52(1), 197–218 (2003). doi:10.1016/S0362-546X(02)00103-7

    Article  MathSciNet  MATH  Google Scholar 

  19. Georgiev, P.G.: Parametric Borwein-Preiss variational principle and applications. Proc. Am. Math. Soc. 133(11), 3211–3225 (2005). doi:10.1090/S0002-9939-05-07853-6

    Article  MathSciNet  MATH  Google Scholar 

  20. Göpfert, A., Henkel, E.C., Tammer, C.: A smooth variational principle for vector optimization problems. In: Recent Developments in Optimization (Dijon, 1994), Lecture Notes in Econom. and Math. Systems, vol. 429, pp. 142–154. Springer, Berlin (1995). doi:10.1007/978-3-642-46823-0_12

  21. Göpfert, A., Riahi, H., Tammer, C., Zălinescu, C.: Variational Methods in Partially Ordered Spaces. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, vol. 17. Springer, New York (2003)

    MATH  Google Scholar 

  22. Gutiérrez, C., Jiménez, B., Novo, V.: Optimality conditions forTanaka’s approximate solutions in vector optimization. In:Generalized Convexity and Related Topics, Lecture Notes inEconomics and Mathematical Systems, vol. 583, pp. 279–295.Springer, Berlin (2006)

  23. Gutiérrez, C., Jiménez, B., Novo, V.: A set-valued Ekeland’s variational principle in vector optimization. SIAM J. Control Optim. 47(2), 883–903 (2008). doi:10.1137/060672868

    Article  MathSciNet  MATH  Google Scholar 

  24. Gutiérrez, C., Jiménez, B., Novo, V.: Equivalent \(\varepsilon \)-efficiency notions in vector optimization. TOP 20(2), 437–455 (2012). doi:10.1007/s11750-011-0223-7

    Article  MathSciNet  MATH  Google Scholar 

  25. Ha, T.X.D.: Some variants of the Ekeland variational principle for a set-valued map. J. Optim. Theory Appl. 124(1), 187–206 (2005). doi:10.1007/s10957-004-6472-y

    Article  MathSciNet  MATH  Google Scholar 

  26. Ioffe, A.D., Tikhomirov, V.M.: Some remarks on variational principles. Math. Notes 61(2), 248–253 (1997). doi:10.1007/BF02355736

    Article  MathSciNet  MATH  Google Scholar 

  27. Isac, G.: Ekeland’s principle and nuclear cones: a geometrical aspect. Math. Comput. Model. 26(11), 111–116 (1997). doi:10.1016/S0895-7177(97)00223-9

    Article  MathSciNet  MATH  Google Scholar 

  28. Khan, A.A., Tammer, C.: Set-Valued Optimization: An Introduction with Applications. Vector Optimization. Springer, Heidelberg (2015). doi:10.1007/978-3-642-54265-7

    Book  MATH  Google Scholar 

  29. Khanh, P.Q.: On Caristi–Kirk’s theorem and Ekeland’s variational principle for Pareto extrema. Bull. Polish Acad. Sci. Math. 37(1–6), 33–39 (1989)

    MathSciNet  MATH  Google Scholar 

  30. Khanh, P.Q., Quy, D.N.: A generalized distance and enhanced Ekeland’s variational principle for vector functions. Nonlinear Anal. 73(7), 2245–2259 (2010). doi:10.1016/j.na.2010.06.005

    Article  MathSciNet  MATH  Google Scholar 

  31. Khanh, P.Q., Quy, D.N.: Versions of Ekeland’s variational principle involving set perturbations. J. Global Optim. 57(3), 951–968 (2013). doi:10.1007/s10898-012-9983-3

    Article  MathSciNet  MATH  Google Scholar 

  32. Krasnoselski, M.A., Lifshits, E.A., Sobolev, A.V.: Positive Linear Systems. The Method of Positive Operators. Nauka, Moscow (1985)

    Google Scholar 

  33. Kruger, A.Y., Plubtieng, S., Seangwattana, T.: Borwein–Preiss variational principle revisited. J. Math. Anal. Appl. 435(2), 1183–1193 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kutateladze, S.S.: Convex \(\varepsilon \)-programming. Sov. Math. Dokl. 20, 391–393 (1979)

    MATH  Google Scholar 

  35. Li, Y., Shi, S.: A generalization of Ekeland’s \(\epsilon \)-variational principle and its Borwein–Preiss smooth variant. J. Math. Anal. Appl. 246(1), 308–319 (2000). doi:10.1006/jmaa.2000.6813

    Article  MathSciNet  MATH  Google Scholar 

  36. Liu, C.G., Ng, K.F.: Ekeland’s variational principle for set-valued functions. SIAM J. Optim. 21(1), 41–56 (2011). doi:10.1137/090760660

    Article  MathSciNet  MATH  Google Scholar 

  37. Loewen, P.D., Wang, X.: A generalized variational principle. Canad. J. Math. 53(6), 1174–1193 (2001). doi:10.4153/CJM-2001-044-8

    Article  MathSciNet  MATH  Google Scholar 

  38. Loridan, P.: \(\epsilon \)-solutions in vector minimization problems. J. Optim. Theory Appl. 43(2), 265–276 (1984). doi:10.1007/BF00936165

    Article  MathSciNet  MATH  Google Scholar 

  39. Németh, A.B.: A nonconvex vector minimization problem. Nonlinear Anal. 10(7), 669–678 (1986). doi:10.1016/0362-546X(86)90126-4

    Article  MathSciNet  MATH  Google Scholar 

  40. Penot, J.P.: Genericity of well-posedness, perturbations and smooth variational principles. Set Valued Anal. 9(1–2), 131–157 (2001). doi:10.1023/A:1011223206312

    Article  MathSciNet  MATH  Google Scholar 

  41. Phelps, R.R.: Convex Functions, Monotone Operators and Differentiability. Lecture Notes in Mathematics, vol. 1364, 2 edn. Springer, Berlin (1993)

  42. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  43. Sitthithakerngkiet, K., Plubtieng, S.: Vectorial form of Ekeland-type variational principle. Fixed Point Theory Appl. 2012(127), 1–11 (2012). doi:10.1186/1687-1812-2012-127

    MathSciNet  MATH  Google Scholar 

  44. Tammer, C.: A generalization of Ekeland’s variational principle. Optimization 25(2–3), 129–141 (1992). doi:10.1080/02331939208843815

    Article  MathSciNet  MATH  Google Scholar 

  45. Tammer, C., Zălinescu, C.: Vector variational principles for set-valued functions. Optimization 60(7), 839–857 (2011). doi:10.1080/02331934.2010.522712

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the referee for the careful reading of the manuscript and constructive comments and suggestions which lead to a considerable improvement in the statement of Theorem 11: dropping the assumption \(\mathrm{int}\,C\ne \emptyset \); cf. Remark 12.2. The research was supported by the Australian Research Council, projects DP110102011 and DP160100854; Naresuan University, and Thailand Research Fund, the Royal Golden Jubilee Ph.D. Program, scholarship 3.M.NU/51/A.1.N.XX.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Y. Kruger.

Additional information

Dedicated to the memory of Jonathan Michael Borwein.

Appendix: Proof of Theorem 11

Appendix: Proof of Theorem 11

(i) and (ii). We define sequences \(\{x_{i}\}\) and \(\{S_{i}\}\) inductively. Set

$$\begin{aligned} S_{0} := \{x \in X\mid f(x_{0})-f(x)-\delta _0\rho (x,x_{0})\bar{c} \in C\}. \end{aligned}$$
(20)

Obviously, \(x_{0}\in S_{0}\). Since f is C-lower semicontinuous with respect to \(\bar{c}\), by Proposition 8, subset \(S_{0}\) is closed: it is sufficient to take \(y:=f(x_{0})\) and \(g(x):=\delta _0\rho (x,x_{0})\). For any \(x \in S_{0}\), we have

$$\begin{aligned} \langle y^{*},f(x_{0}) - f(x)\rangle \ge \delta _0\rho (x,x_{0})\langle y^{*},\bar{c}\rangle = \lambda _0\delta _0\rho (x,x_{0}). \end{aligned}$$

At the same time, by Definition 2, \(f(x)-f(x_{0})\in C+\varepsilon \mathbb B\). Hence,

$$\begin{aligned} \langle y^{*},f(x) - f(x_{0})\rangle \ge -\varepsilon . \end{aligned}$$

It follows from the last two inequalities that

$$\begin{aligned} \rho (x,x_{0}) \le \frac{\varepsilon }{\lambda _0\delta _0}. \end{aligned}$$
(21)

For \(i=0,1,\ldots \), denote \(j_i:=\min \{i,N-1\}\), i.e., \(j_i\) is the largest integer \(j\le i\) such that \(\delta _j>0\). Let \(i\in \mathbb N\) and suppose \(x_{0}, \ldots ,x_{i-1}\) and \(S_{0},\ldots ,S_{i-1}\) have been defined. We choose \(x_{i} \in S_{i-1}\) such that

$$\begin{aligned}&\langle y^{*},f(x_{i})\rangle +\lambda _0\sum _{k=0}^{j_i-1}\delta _{k}\rho (x_{i},x_{k}) \nonumber \\&\quad < \inf _{x\in S_{i-1}}\left( \langle y^{*},f(x)\rangle + \lambda _0\sum _{k=0}^{j_i-1}\delta _{k}\rho (x,x_{k})\right) + \lambda _0\delta _{j_i}\varepsilon _i \end{aligned}$$
(22)

and define

$$\begin{aligned} S_{i}:= & {} \Biggl \{x \in S_{i-1}\mid f(x_{i})- f(x) \nonumber \\&-\left( \sum _{k=0}^{j_i-1}\delta _{k} (\rho (x,x_{k})-\rho (x_{i},x_{k}))+ \delta _{j_i}\rho (x,x_{i})\right) \bar{c}\in C\Biggr \}. \end{aligned}$$
(23)

Obviously, \(x_{i}\in S_{i}\). Since f is C-lower semicontinuous with respect to \(\bar{c}\), by Proposition 8, subset \(S_{i}\) is closed: it is sufficient to take \(y:=f(x_{i})\) and

$$\begin{aligned} g(x):=\sum _{k=0}^{j_i-1}\delta _{k} (\rho (x,x_{k})-\rho (x_i,x_{k})) + \delta _{j_i}\rho (x,x_{i}). \end{aligned}$$

For any \(x \in S_{i}\), we have

$$\begin{aligned} \langle y^{*},f(x_{i}) - f(x)\rangle + \lambda _0\sum _{k=0}^{j_i-1}\delta _{k} (\rho (x_{i},x_{k})-\rho (x,x_{k})) -\lambda _0\delta _{j_i}\rho (x,x_{i})\ge 0, \end{aligned}$$

and consequently, making use of (22),

$$\begin{aligned}&\rho (x,x_{i})\le \frac{1}{\lambda _0\delta _{j_i}} \Biggl (\langle y^{*},f(x_{i})\rangle + \lambda _0\sum _{k=0}^{j_i-1}\delta _{k}\rho (x_{i},x_{k}) \nonumber \\&\quad -\Bigl (\langle y^{*},f(x)\rangle +\lambda _0\sum _{k=0}^{j_i-1} \delta _{k}\rho (x,x_{k})\Bigr )\Biggr )<\varepsilon _i. \end{aligned}$$
(24)

We can see that, for all \(i\in \mathbb N\), subsets \(S_{i}\) are nonempty and closed, \(S_{i}\subset S_{i-1}\), and \(\sup _{x\in S_i}\rho (x,x_{i}) \rightarrow 0\) as \(i\rightarrow \infty \). Since \(\rho \) is a gauge-type function, we also have \(\sup _{x\in S_i}d(x,x_{i})\le \varepsilon _i\rightarrow 0\) and consequently, \(\mathrm{diam} (S_{i}) \rightarrow 0.\) Since X is complete, \(\cap _{i=0}^{\infty }S_{i}\) contains exactly one point; let it be \(\bar{x}\). Hence, \(\rho (\bar{x},x_{i}) \rightarrow 0\) and \(x_{i} \rightarrow \bar{x}\) as \(i \rightarrow \infty \). Thanks to (21) and (24), \(\bar{x}\) satisfies (i) and (ii).

Before proceeding to the proof of claim (iii), we prepare several building blocks which are going to be used when proving claims (iii) and (iv).

Let integers m, n and i satisfy \(0\le m\le i<n\). Since \(x_{i+1}\in S_i\) and \(\bar{x}\in S_n\), it follows from (20) (when \(i=0\)) and (23) that

$$\begin{aligned}&f(x_{i})- f(x_{i+1}) -\left( \sum _{k=0}^{j_i-1}\delta _{k} (\rho (x_{i+1},x_{k})-\rho (x_{i},x_{k}))+ \delta _{j_i}\rho (x_{i+1},x_{i})\right) \bar{c}\in C, \end{aligned}$$
(25)
$$\begin{aligned}&f(x_{n})- f(\bar{x}) - \left( \sum _{k=0}^{j_n-1}\delta _{k} (\rho (\bar{x},x_{k})-\rho (x_{n},x_{k}))+ \delta _{j_n}\rho (\bar{x},x_{n})\right) \bar{c}\in C. \end{aligned}$$
(26)

We are going to add together inclusions (25) from \(i=m\) to \(i=n-1\) and inclusion (26). Depending on the value of N, three cases are possible.

\(\underline{\hbox {If}\, N>n}\), then \(j_i=i\) and \(j_n=n\). Adding inclusions (25) from \(i=m\) to \(i=n-1\), we obtain

$$\begin{aligned} f(x_{m})- f(x_{n}) -\left( \sum _{k=0}^{n-1}\delta _{k} \rho (x_{n},x_{k})-\sum _{k=0}^{m-1}\delta _{k} \rho (x_{m},x_{k})\right) \bar{c}\in C. \end{aligned}$$

Adding together the last inclusion and inclusion (26), we arrive at

$$\begin{aligned} f(x_{m})- f(\bar{x}) -\left( \sum _{k=0}^{n}\delta _{k} \rho (\bar{x},x_{k})-\sum _{k=0}^{m-1}\delta _{k} \rho (x_{m},x_{k})\right) \bar{c}\in C. \end{aligned}$$
(27)

\(\underline{\hbox {If}\, N\le m}\), then \(j_i=N-1\) and \(j_n=N-1\). Adding inclusions (25) from \(i=m\) to \(i=n-1\), we obtain

$$\begin{aligned} f(x_{m})- f(x_{n}) -\left( \sum _{k=0}^{N-2}\delta _{k} (\rho (x_{n},x_{k})-\rho (x_{m},x_{k}))+ \delta _{N-1}\sum _{k=m}^{n-1}\rho (x_{k+1},x_{k})\right) \bar{c}\in C. \end{aligned}$$

Adding together the last inclusion and inclusion (26), we arrive at

$$\begin{aligned}&f(x_{m})- f(\bar{x}) - \Biggl (\sum _{k=0}^{N-2}\delta _{k} (\rho (\bar{x},x_{k})-\rho (x_{m},x_{k})) \nonumber \\&\quad +\,\delta _{N-1}\left( \sum _{k=m}^{n-1}\rho (x_{k+1},x_{k})+ \rho (\bar{x},x_{n})\right) \Biggr )\bar{c}\in C. \end{aligned}$$
(28)

\(\underline{\hbox {If}\, m<N\le n}\), we add inclusions (25) separately from \(i=m\) to \(i=N-1\) and from \(i=N\) to \(i=n-1\) and obtain, respectively,

$$\begin{aligned}&f(x_{m})- f(x_{N}) -\left( \sum _{k=0}^{N-1}\delta _{k} \rho (x_{N},x_{k})-\sum _{k=0}^{m-1}\delta _{k} \rho (x_{m},x_{k})\right) \bar{c}\in C,\\&f(x_{N})- f(x_{n}) -\Biggl (\sum _{k=0}^{N-2}\delta _{k} (\rho (x_{n},x_{k})-\rho (x_{N},x_{k})) \nonumber \\&\quad +\,\delta _{N-1} \sum _{k=N}^{n-1}\rho (x_{k+1},x_{k})\Biggr )\bar{c}\in C. \end{aligned}$$

Adding together the last two inclusions and inclusion (26), we obtain

$$\begin{aligned}&f(x_{m})- f(\bar{x}) - \Biggl (\sum _{k=0}^{N-2}\delta _{k} \rho (\bar{x},x_{k})-\sum _{k=0}^{m-1}\delta _{k} \rho (x_{m},x_{k}) \nonumber \\&\quad +\,\delta _{N-1}\left( \sum _{k=N-1}^{n-1}\rho (x_{k+1},x_{k})+ \rho (\bar{x},x_{n})\right) \Biggr )\bar{c}\in C. \end{aligned}$$
(29)

(iii) When \(N=+\infty \), we set \(m=0\) in the inclusion (27):

$$\begin{aligned} f(x_{0})- f(\bar{x})- \left( \sum _{k=0}^{n}\delta _{k}\rho (\bar{x},x_{k})\right) \bar{c}\in C. \end{aligned}$$
(30)

Since \(\bar{c}\in C\setminus \{0\}\) and C is a pointed cone, we have \(-\bar{c}\notin C\). Since C is closed, it holds \((-\bar{c}+r\mathbb B)\cap C=\emptyset \) for some \(r>0\), and consequently, \((-s_n\bar{c}+s_nr\mathbb B)\cap C=\emptyset \), where \(s_n:=\sum _{k=0}^{n}\delta _{k}\rho (\bar{x},x_{k})\). It follows from (30) that \(s_n r\le \Vert f(x_{0})- f(\bar{x})\Vert \) for all \(n\in \mathbb N\). This implies that the series \(\sum _{k=0}^{\infty } \delta _k\rho (\bar{x},x_k)\) is convergent and, thanks to (30), condition (6) holds true.

When \(N<+\infty \), we set \(m=0\) and take \(n=N-1\) in the inclusion (27) and any \(n\ge N\) in the inclusion (29):

$$\begin{aligned}&f(x_{0})- f(\bar{x}) -\left( \sum _{k=0}^{N-1}\delta _{k} \rho (\bar{x},x_{k})\right) \bar{c}\in C,\end{aligned}$$
(31)
$$\begin{aligned}&f(x_{0})-f(\bar{x}) - \Biggl (\sum _{k=0}^{N-2}\delta _{k} \rho (\bar{x},x_{k})\nonumber \\&\quad + \delta _{N-1} \left( \sum _{i=N-1}^{n-1}\rho (x_{i+1},x_{i})+ \rho (\bar{x},x_{n})\right) \Biggr )\bar{c}\in C. \end{aligned}$$
(32)

As above, for some \(r>0\) and any \(n>N\), it holds \((-\delta _{N-1}s_n\bar{c}+\delta _{N-1}s_nr\mathbb B)\cap C=\emptyset \), where \(s_n:=\sum _{i=N-1}^{n-1}\rho (x_{i+1},x_{i})\). It follows from (32) that

$$\begin{aligned} \delta _{N-1}s_nr\le \Vert f(x_{0})-f(\bar{x})\Vert + \sum _{k=0}^{N-2}\delta _{k} \rho (\bar{x},x_{k})+\delta _{N-1}\rho (\bar{x},x_{n})\Vert \bar{c}\Vert . \end{aligned}$$

Since \(\rho (\bar{x},x_{n})\rightarrow 0\) as \(n\rightarrow \infty \), this implies that the series \(\sum _{i=N-1}^{\infty } \rho (x_{i+1},x_{i})\) is convergent. Combining the two inclusions (31) and (32) produces estimate (7).

(iv) For any \(x \ne \bar{x},\) there exists an \(m_0\in \mathbb N\) such that \(x\notin S_{m}\) for all \(m\ge m_0\). By (23), this means that

$$\begin{aligned} f(x_{m})- f(x) - \left( \sum _{k=0}^{j_m-1}\delta _{k} (\rho (x,x_{k})-\rho (x_{m},x_{k}))+ \delta _{j_m}\rho (x,x_{m})\right) \bar{c}\notin C. \end{aligned}$$
(33)

Depending on the value of N, we consider two cases.

\(\underline{\hbox {If}\, N=+\infty }\), then \(j_m=m\). Since the series \(\sum _{k=0}^{\infty } \delta _{k}\rho (\bar{x},x_{k})\) is convergent and C is closed, we can pass in (27) to the limit as \(n\rightarrow \infty \) to obtain

$$\begin{aligned} f(x_{m})+ \left( \sum _{k=0}^{m-1}\delta _{k}\rho (x_{m},x_{k})\right) \bar{c} - f(\bar{x})-\left( \sum _{k=0}^{\infty } \delta _{k}\rho (\bar{x},x_{k})\right) \bar{c} \in C. \end{aligned}$$

Comparing the last inclusion with (33), we arrive at condition (8).

\(\underline{\hbox {If}\, N<\infty }\), we can take \(m_0\ge N\). Then \(j_m=N-1\) and it follows from (28) that

$$\begin{aligned}&f(x_{m})- f(\bar{x}) - \Biggl (\sum _{k=0}^{N-2}\delta _{k} (\rho (\bar{x},x_{k})-\rho (x_{m},x_{k})) \nonumber \\&\quad +\,\delta _{N-1}\sup _{n\ge m} \left( \sum _{k=m}^{n-1}\rho (x_{k+1},x_{k})+ \rho (\bar{x},x_{n})\right) \Biggr )\bar{c}\in C. \end{aligned}$$

Comparing the last inclusion with (33), we arrive at (9). This completes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kruger, A.Y., Plubtieng, S. & Seangwattana, T. Borwein–Preiss vector variational principle. Positivity 21, 1273–1292 (2017). https://doi.org/10.1007/s11117-017-0466-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11117-017-0466-0

Keywords

Mathematics Subject Classification

Navigation