Skip to main content
Log in

Zonoids and sparsification of quantum measurements

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

In this paper, we establish a connection between zonoids (a concept from classical convex geometry) and the distinguishability norms associated to quantum measurements or POVMs (Positive Operator-Valued Measures), recently introduced in quantum information theory. This correspondence allows us to state and prove the POVM version of classical results from the local theory of Banach spaces about the approximation of zonoids by zonotopes. We show that on \(\mathbf {C}^d\), the uniform POVM (the most symmetric POVM) can be sparsified, i.e. approximated by a discrete POVM having only \(O(d^2)\) outcomes. We also show that similar (but weaker) approximation results actually hold for any POVM on \(\mathbf {C}^d\). By considering an appropriate notion of tensor product for zonoids, we extend our results to the multipartite setting: we show, roughly speaking, that local POVMs may be sparsified locally. In particular, the local uniform POVM on \(\mathbf {C}^{d_1}\otimes \cdots \otimes \mathbf {C}^{d_k}\) can be approximated by a discrete POVM which is local and has \(O(d_1^2 \times \cdots \times d_k^2)\) outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambainis, A., Emerson, J.: Quantum t-designs: t-wise independence in the quantum world. In: Proceedings of 22nd IEEE Conference on Computational Complexity, pp. 129–140. Piscataway, NJ (2007). arXiv:quant-ph/0701126

  2. Aubrun, G.: On almost randomizing channels with a short Kraus decomposition. Commun. Math. Phys. 288(3), 1103–1116 (2009). arXiv:0805.2900

  3. Barvinok, A.: A course in convexity, vol. 54. American Mathematical Soc. (2002)

  4. Batson, J., Spielman, D.A., Srivatsava, N.: Twice-Ramanujan sparsifiers. arXiv:0808.0163

  5. Bennett, G.: Schur multipliers. Duke Math. J. 44(3), 603–639 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bolker, E.D.: A class of convex bodies. Trans. AMS 145, 323–345 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bourgain, J., Lindenstrauss, J., Milman, V.: Approximation of zonoids by zonotopes. Acta Mathematica 162(1), 73–141 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brandão, F.G.S.L., Christandl, M., Yard, J.T.: Faithful squashed entanglement. Commun. Math. Phys. 306, 805–830 (2011). arXiv:1010.1750 [quant-ph]

  9. Chafaï, D., Guédon, O., Lecué, G., Pajor, A.: Interactions between compressed sensing, random matrices and high dimensional geometry

  10. Figiel, T., Johnson, W.B.: Large subspaces of \(\ell _{\infty }^n\) and estimates of the Gordon-Lewis constant. Israel J. Math. 37(1-2), 92–112 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  11. Figiel, T., Lindenstrauss, J., Milman, V.D.: The dimension of almost spherical sections of convex bodies. Acta Mathematica 139(1-2), 53–94 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  12. Goodey, P., Weil,W.: Zonoids and Generalizations. Handbook of Convex Geometry, vol. B, pp. 1296–1326. North-Holland, Amsterdam (1993)

  13. Gordon, Y.: Some inequalities for Gaussian processes and applications. Israel J. Math. 50(4), 265–289 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  14. Harrow, A.W.: The Church of the Symmetric Subspace. arXiv:1308.6595 [quant-ph]

  15. Harrow, A.W., Montanaro, A., Short, A.J.: Limitations on quantum dimensionality reduction. In: Proceedings of ICALP’11 LNCS 6755, pp. 86–97. Springer, Berlin Heidelberg (2011). arXiv:1012.2262 [quant-ph]

  16. Helstrom, C.W.: Quantum detection and estimation theory. Academic Press, New York (1976)

    MATH  Google Scholar 

  17. Holevo, A.S.: Statistical decision theory for quantum systems. J. Mult. Anal. 3, 337–394 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  18. Indyk, P.: Uncertainty principles, extractors, and explicit embeddings of \(L_2\) into \(L_1\). In: 39th ACM Symposium on Theory of Computing (2007)

  19. Indyk, P., Szarek, S.: Almost-Euclidean subspaces of \(l_1^N\) via tensor products: a simple approach to randomness reduction. In: RANDOM 2010, LNCS 6302, pp. 632–641. Springer, Berlin Heidelberg (2010). arXiv:1001.0041 [math.MG]

  20. Lancien, C., Winter, A.: Distinguishing multi-partite states by local measurements. Commun. Math. Phys. 323, 555–573 (2013). arXiv:1206.2884 [quant-ph]

  21. Lovett, S., Sodin, S.: Almost Euclidean sections of the \(N\)-dimensional cross-polytope using \(O(N)\) random bits. Commun. Contemp. Math. 10(4), 477–489 (2008). arXiv:math/0701102

  22. Matthews, W., Wehner, S., Winter, A.: Distinguishability of quantum states under restricted families of measurements with an application to data hiding. Comm. Math. Phys. 291(3) (2009). arXiv:0810.2327[quant-ph]

  23. Pisier, G.: The volume of convex bodies and banach spaces geometry, Cambridge tracts in mathematics, 94th edn. Cambridge University Press, Cambridge (1989)

    Book  Google Scholar 

  24. Rosental, H., Szarek, S.: On tensor products of operators from \(L^p\) to \(L^q\). Functional Analysis, pp. 108–132. Springer, Berlin Heidelberg (1991)

  25. Rudin, W.: Trigonometric series with gaps. J. Math. Mech 9(2), 203–227

  26. Rudin, W.: Functional analysis. McGraw-Hill International Series in pure and applied Mathematics, Singapore (1973)

  27. Rudin, W.: Real and complex analysis. McGraw-Hill International Editions, Mathematics Series, Singapore (1987)

  28. Schechtman, G.: More on embedding subspaces of \(L_p\) in \(l^n_r\). Compositio Math. 61(2), 159–169 (1987)

    MathSciNet  MATH  Google Scholar 

  29. Schenider, R., Weil, W.: Zonoids and related topics. Convexity Appl. 296–317 (1983)

  30. Sen, P.: Random measurement bases, quantum state distinction and applications to the hidden subgroup problem. In: Proceedings of 21st IEEE Conference on Computational Complexity, Piscataway, NJ (2006). arXiv:quant-ph/0512085

  31. Talagrand, M.: Embedding subspaces of \(L_1\) into \(\ell _1^N\). Proc. Am. Math. Soc. 108(2), 363–369 (1990)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thank Andreas Winter for having first raised the general question of finding POVMs with few outcomes but good discriminating power. We also thank Marius Junge for suggesting the possible connection between POVMs and zonoids, and for pointing out to us relevant literature.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Aubrun.

Additional information

This research was supported by the ANR project OSQPI ANR-11-BS01-0008.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aubrun, G., Lancien, C. Zonoids and sparsification of quantum measurements. Positivity 20, 1–23 (2016). https://doi.org/10.1007/s11117-015-0337-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11117-015-0337-5

Keywords

Mathematics Subject Classification