Skip to main content
Log in

Noncommutative Positivstellensätze for pairs representation-vector

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

We study non-commutative real algebraic geometry for a unital associative *-algebra \({\mathcal {A}}\) viewing the points as pairs (π, v) where π is an unbounded *-representation of \({\mathcal A}\) on an inner product space which contains the vector v. We first consider the *-algebras of matrices of usual and free real multivariate polynomials with their natural subsets of points. If all points are allowed then we can obtain results for general \({\mathcal {A}}\). Finally, we compare our results with their analogues in the usual (i.e. Schmüdgen’s) non-commutative real algebraic geometry where the points are unbounded *-representation of \({\mathcal {A}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrozie C.G., Vasilescu F.H.: Operator-theoretic positivstellensätze. Z. Anal. Anwendungen 22(2), 299–314 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bourbaki N.: Topological vector spaces, Chaps. 1–5, English edition. Springer, Masson (1987)

    Google Scholar 

  3. Cimprič J.: A representation theorem for archimedean quadratic modules on *-rings. Can. math. bull. 52, 39–52 (2009)

    Article  MATH  Google Scholar 

  4. Cimprič J.: Maximal quadratic modules on *-rings. Algebr. Represent. Theory 11(1), 83–91 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gondard D., Ribenboim P.: Le 17e problème de Hilbert pour les matrices. Bull. Sci. Math. (2) 98(1), 49–56 (1974)

    MathSciNet  MATH  Google Scholar 

  6. Jacobi T.: A representation theorem for certain partially ordered commutative rings. Math. Z. 237(2), 259–273 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Handelman D.: Rings with involution as partially ordered abelian groups. Rocky Mountain J. Math. 11(3), 337–381 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  8. Helton J.W.: “Positive” noncommutative polynomials are sums of squares. Ann. Math. (2) 156(2), 675–694 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Helton J.W., McCullough S.: A Positivstellensatz for non-commutative polynomials. Trans. Am. Math. Soc. 356(9), 3721–3737 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Helton J.W., McCullough S., Putinar M.: Strong majorization in a free *-algebra. Math. Z. 255(3), 579–596 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hillar C.J., Nie J.: An elementary and constructive solution to Hilbert’s 17th problem for matrices. Proc. Am. Math. Soc. 136(1), 73–76 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Klep, I., Schweighofer, M.: Pure states, positive matrix polynomials and sums of hermitian squares, arXiv:0907.2260

  13. Marshall, M.: Positive polynomials and sums of squares. American Mathematical Society Surveys and Monographs 146 (2008)

  14. McCullough S., Putinar M.: Noncommutative sums of squares. Pac. J. Math. 218(1), 167–171 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Procesi C., Schacher M.: A non-commutative real Nullstellensatz and Hilbert’s 17th problem. Ann. Math. 104, 395–406 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  16. Putinar M., Vasilescu F.-H.: Solving moment problems by dimensional extension. Ann. Math. (2) 149, 1087–1107 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Scherer C.W., Hol C.W.J.: Matrix sum-of-squares relaxations for robust semi-definite programs. Math. Program Ser. B 107(1–2), 189–211 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Schmüdgen K.: Unbounded Operator Algebras and Representation Theory. Birkhäuser Verlag, Basel (1990)

    Google Scholar 

  19. Schmüdgen, K.: Noncommutative real algebraic geometry—some basic concepts and first ideas. In: Emerging Applications of Algebraic Geometry. IMA Volumes in Mathematics and its Applications, vol. 149, pp. 325–350. Springer, New York (2009)

  20. Stengle G.: A nullstellensatz and a positivstellensatz in semialgebraic geometry. Math. Ann. 207, 87–97 (1974)

    Article  MathSciNet  Google Scholar 

  21. Vidav I.: On some *-regular rings. Acad. Serbe Sci. Pubi. Inst. Math. 13, 73–80 (1959)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob Cimprič.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cimprič, J. Noncommutative Positivstellensätze for pairs representation-vector. Positivity 15, 481–495 (2011). https://doi.org/10.1007/s11117-010-0098-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11117-010-0098-0

Keywords

Mathematics Subject Classification (2010)

Navigation