Skip to main content
Log in

Low-power all-optical switch based on slow light photonic crystal

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

In this study, an optical switch based on two-dimensional photonic crystals is presented for the slow light regime. This regime enhances light–matter interaction and can be used to design low-power all-optical devices. Due to slow light properties in photonic crystals, the maximum flat band for the group index of 8 was obtained. The threshold light intensity was reduced to 16 mW/µm2 in comparison with other works. The maximum rise and fall times were calculated about 1 ps, which means the switching frequency is about 1 THz. The total footprint of the proposed switch is 5.5 × 9 µm2, which makes the possibility for optical integration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhao, Y., Zhao, H.W., Zhang, X., Yuan, Y., Zhang, S.: New mechanisms of slow light and their applications. Opt. Laser Technol. 41(5), 517–525 (2009)

    Article  Google Scholar 

  2. Krauss, T.F.: Why do we need slow light. Nat. Photon. 2(8), 448–450 (2008)

    Article  Google Scholar 

  3. Khurgin, J.B., Tucker, R.S.: Slow Light: Science and Applications, 2nd edn. CRC Press, Boca Raton (2008)

    Book  Google Scholar 

  4. Mortensen, N.A., Xiao, S.: Slow-light enhancement of Beer-Lambert-Bouguer absorption. Appl. Phys. Lett. 90(14), 141108-1-141108–3 (2007)

    Article  Google Scholar 

  5. Monat, C., Corcoran, B., Pudo, D., Ebnali-Heidari, M., Grillet, C., Pelusi, M.D., Moss, D.J., Eggleton, B.J., White, T.P., O’Faolain, L.: Slow light enhanced nonlinear optics in silicon photonic crystal waveguides. IEEE J. Sel. Top. Quantum Electron. 16(1), 344–356 (2010)

    Article  Google Scholar 

  6. Wu, J., Li, Y., Peng, C., Wang, Z.Y.: Wideband and low dispersion slow light in slotted photonic crystal waveguide. Opt. Commun. 283(14), 2815–2819 (2010)

    Article  Google Scholar 

  7. Digonnet, M., Wen, H., Terrel, M.A., Fan, Sh.: Slow light in fiber sensors. Proc. SPIE Int. Soc. Opt. Eng. 8273, 82730W (2012)

    Google Scholar 

  8. Chahal, M., Celler, G.K., Jaluria, Y., Jiang, W.: Thermo-optic characteristics and switching power limit of slow-light photonic crystal structures on a silicon-on-insulator platform. Opt. Express. 20(4), 4225–4231 (2012)

    Article  Google Scholar 

  9. Zadok, A., Eyal, A., Tur, M.: Stimulated brillouin scattering slow light in optical fibers. Appl. Opt. 50(25), E38–E49 (2011)

    Article  Google Scholar 

  10. Hau, L.V., Harris, S.E., Dutton, Z., Behroozi, C.H.: Light speed reduction to 17 meters per second in an ultracold atomic gas. Nature 397(6720), 594–598 (1999)

    Article  Google Scholar 

  11. Zhu, Zh., Dawes, A.M.C., Gauthier, D.J., Zhang, L., Willner, A.E.: Broadband SBS slow light in an optical fiber. J. Lightw. Technol. 25(1), 201–206 (2007)

    Article  Google Scholar 

  12. Qin, G.S., Jose, R., Ohishi, Y.: Stimulated Raman scattering in tellurite glasses as a potential system for slow light generation. J. Appl. Phys. 101(9), 093109-1-093109–5 (2007)

    Article  Google Scholar 

  13. Totsuka, K., Tomita, M.: Dynamics of fast and slow pulse propagation through a microsphere optical fiber system. Phys. Rev. E. 75(1pt2), 016610-1-016610–5 (2007)

    Google Scholar 

  14. Zhao, Y., Zhang, Y., Wang, Q., Hu, H.: Review on the optimization methods of slow light in photonic crystal waveguide. IEEE Trans. Nanotechnol. 14(3), 407–426 (2015)

    Article  Google Scholar 

  15. Krauss, T.F.: Slow light in photonic crystal waveguides. J. Phys. D. Appl. Phys. 40(9), 2666–2670 (2007)

    Article  Google Scholar 

  16. Dai, L., Jiang, C.: Low dispersion slow light waveguide with high coupling efficiency. J. Phys. D Appl. Phys. 42(22), 225102-1-225102–6 (2009)

    Article  Google Scholar 

  17. Kuramochi, E., Notomi, M., Hughes, S., Shinya, A., Watanabe, T., Ramunno, L.: Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs. Phys. Rev. B 72, 161318-1-161318–4 (2005)

    Article  Google Scholar 

  18. Li, J., White, T.P., O’Faolain, L., Gomez-Iglesias, A., Krauss, T.F.: Systematic design of flat band slow light in photonic crystal waveguides. Opt. Exp. 16(9), 6227–6232 (2008)

    Article  Google Scholar 

  19. Tian, H.P., Zhai, J., Ji, Y.F.: Flat band slow light performance in dual-slot silicon-on insulator based photonic crystal waveguide. Jpn. J. Appl. Phys. 52(3), 032001-1-032001–5 (2013)

    Google Scholar 

  20. Aghababaeian, H., Vadjed-Samiei, M.H., Granpayeh, N.: Temperature stabilization of group index in silicon slotted photonic crystal waveguides. J. Opt. Soc. Korea 15(4), 398–402 (2011)

    Article  Google Scholar 

  21. Hao, R., Cassan, E., Le Roux, X., Gao, D., Do Khanh, V., Vivien, L., Marris-Morini, D., Zhang, X.: Improvement of delay-bandwidth product in photonic crystal slow-light waveguides. Opt. Exp. 18(16), 16309–16319 (2010)

    Article  Google Scholar 

  22. Caer, C., Le Roux, X., Do Khanh, V., Marris-Morini, D., Izard, N., Vivien, L., Gao, D., Cassan, E.: Dispersion engineering of wide slot photonic crystal waveguides by Bragg-like corrugation of the slot. IEEE Photon. Technol. Lett. 23(18), 1298–1300 (2011)

    Article  Google Scholar 

  23. Pourmand, M., Karimkhani, A., Moravvej-Farshi, M.K.: Slow light photonic crystal waveguides with large delay-bandwidth product. Opt. Eng. 55(12), 123108 (2016)

    Article  Google Scholar 

  24. Long, F., Tian, H., Ji, Y.: A study of dynamic modulation and buffer capability in low dispersion photonic crystal waveguides. J. Lightw. Technol. 28(8), 1139–1143 (2010)

    Article  Google Scholar 

  25. Fasihi, K.: High-contrast all-optical controllable switching and routing in nonlinear photonic crystals. J. Lightw. Technol. 32(18), 3126–3131 (2014)

    Article  Google Scholar 

  26. Ghadrdan, M., Mansouri-Birjandi, M.A.: Implementation of all-optical switch based on nonlinear photonic crystal ring resonator with embedding metallic nanowires in the ring resonators. Opt. Quantum Electron. 48(5), 299 (2016)

    Article  Google Scholar 

  27. Andalib, P., Granpayeh, N.: All-optical ultracompact photonic crystal AND gate based on nonlinear ring resonators. J. Opt. Soc. Am. B 26(1), 10–16 (2008)

    Article  Google Scholar 

  28. Alipour-Banaei, H., Mehdizadeh, F., Serajmohammadi, S.: All optical NAND gate based on nonlinear photonic crystal ring resonators. Optik 130, 1214–1221 (2017)

    Article  MATH  Google Scholar 

  29. Daghooghi, T., Soroosh, M., Ansari-Asl, K.: Ultra-fast all-optical decoder based on nonlinear photonic crystal ring resonators. Appl. Opt. 57(9), 2250–2257 (2018)

    Article  Google Scholar 

  30. Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H.: A proposal for 4-to-2 optical encoder based on photonic crystals. IET Optoelectron. 11(1), 29–35 (2017)

    Article  Google Scholar 

  31. Shirdel, M., Mansouri-Birjandi, M.A.: Photonic crystal all-optical switch based on a nonlinear cavity. Optik 127(8), 3955–3958 (2016)

    Article  Google Scholar 

  32. Alipour-Banaei, H., Mehdizadeh, F., Serajmohammadi, S.: Design and simulation of all optical decoder based on nonlinear PhCRRs. Optik 156, 701–706 (2018)

    Article  Google Scholar 

  33. O’Faolain, L., White, T.P., O’Brien, D., Yuan, X., Settle, M.D., Krauss, T.F.: Dependence of extrinsic loss on group velocity in photonic crystal waveguides. Opt. Exp. 15(20), 13129–13138 (2007)

    Article  Google Scholar 

  34. Beggs, D.M., O’Faolain, L., Krauss, T.F.: Accurate determination of the functional hole size in photonic crystal slabs using optical methods. Photon. Nanostruct. 6(3–4), 213–218 (2008)

    Article  Google Scholar 

  35. Pu, S., Wang, H., Wang, N., Zeng, X.: Tunable flat band slow light in reconfigurable photonic crystal waveguides based on magnetic fluids. Opt. Commun. 311, 16–19 (2013)

    Article  Google Scholar 

  36. Yariv, A., Xu, Y., Lee, R.K., Scherer, A.: Coupled-resonator optical waveguide: a proposal and analysis. Opt. Lett. 24(11), 711–713 (1999)

    Article  Google Scholar 

  37. Bahadori-Haghighi, Sh., Ghayour, R.: Optical self-phase modulation using a new photon crystal coupled-cavity waveguide. Opt. Appl. XLIV(1), 29–38 (2014)

    Google Scholar 

  38. Barrios, C.A.: High-performance all-optical silicon micro switch. Electron. Lett. 40(14), 862–863 (2004)

    Article  Google Scholar 

  39. Baba, T.: Slow light in photonic crystals. Nat. Photonics 2, 465–473 (2008)

    Article  Google Scholar 

  40. Abedi, K., Mirjalili, S.M.: Slow light performance enhancement of Bragg slot photonic crystal waveguide with particle swarm optimization algorithm. Opt. Commun. 339, 7–13 (2015)

    Article  Google Scholar 

  41. Frandsen, L., Lavrinenko, A.V., Fage-Pedersen, J., Borel, P.I.: Photonic crystal waveguides with semi-slow light and tailored dispersion properties. Opt. Express 14(20), 9444–9450 (2006)

    Article  Google Scholar 

  42. Wang, D., Zhang, J., Yuan, L., Lei, J., Chen, S., Han, J., Hou, Sh.: Slow light engineering in poly atomic photonic crystal waveguides based on square lattice. Opt. Commun. 284(24), 5829–5832 (2011)

    Article  Google Scholar 

  43. Fibich, G., Gaeta, A.L.: Critical power for self-focusing in bulk media and in hallow waveguides. Opt. Lett. 25(5), 335–337 (2000)

    Article  Google Scholar 

  44. Ogusu, K., Yamasaki, J., Maeda, S., Kitao, M., Minakata, M.: Linear and nonlinear optical properties of Ag-As-Se chalcogenide glasses for all-optical switching. Opt. Lett. 29(3), 265–267 (2004)

    Article  Google Scholar 

  45. Koos, C., Jacome, L., Poulton, C., Leuthold, J., Freude, W.: Nonlinear silicon-on-insulator waveguides for all-optical signal processing. Opt. Express 15(10), 5976–5990 (2007)

    Article  Google Scholar 

  46. Sullivan, D.M.: Electromagnetic Simulation Using the FTDT Method. IEEE Press, Hoboken (2013)

    Book  Google Scholar 

  47. Tay, T.T., Mareels, I., Moore, J.B.: High Performance Control. Birkhäuser, Boston (1997)

    MATH  Google Scholar 

  48. Daghooghi, T., Soroosh, M., Ansari-Asl, K.: A novel proposal for all-optical decoder based on photonic crystals. Photonic Netw. Commun. 35(3), 335–341 (2018)

    Article  Google Scholar 

  49. Khosravi, Sh., Zavvari, M.: Design and analysis of integrated all-optical 2×4 decoder based on 2D photonic crystals. Photonic Netw. Commun. 35(1), 122–128 (2018)

    Article  Google Scholar 

  50. Mehdizadeh, F., Alipour-Banaei, H., Serajmohammadi, S.: Study the role of non-linear resonant cavities in photonic crystal-based decoder switches. J. Mod. Opt. 64(13), 1233–1239 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Soroosh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daghooghi, T., Soroosh, M. & Ansari-Asl, K. Low-power all-optical switch based on slow light photonic crystal. Photon Netw Commun 43, 177–184 (2022). https://doi.org/10.1007/s11107-022-00977-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-022-00977-9

Keywords

Navigation