Skip to main content
Log in

The Hot Deformation Behavior of Spray-Formed High Speed Steel

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

The hot deformation behavior of spray-formed 1.28C–6.4W–5Mo–4.2Cr–3.1V–8.5Co high speed steel is investigated in the 950–1100°C temperature range at a strain rates of 0.1 to 50 sec–1 and a true strain of 1.0. The activation energy for hot deformation is obtained. The relation between the flow stress and Zener–Hollomon parameter is successfully analyzed via the hyperbolic sine function under the whole range of deformation conditions. By a microstructural analysis for the breakdown of carbide networks in the temperature range and different strain rates, the size and distributing character of carbide grains are given. The appropriate ranges of deformation temperature and strain rate are provided to obtain fine spheroidal carbide particles and their uniform distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

References

  1. B. Zhou, Y. Shen, J. Chen, and Z.-S. Cui, “Breakdown behavior of eutectic carbide in high speed steel during hot compression,” J. Iron Steel Res. Int., 18, No.1, 41–48 (2011).

  2. V. I. Ul’shin, K. A. Gogaev, and S. V. Ul’shin, “Effect of high cooling rates on the structuration and mechanical properties of tool materials,” Powder Metall. Met. Ceram., 48, No. 9, 547–554 (2009).

    Article  Google Scholar 

  3. V. Lachenicht, G. Scharf, D. Zebrowski, and A. Shalimov, “Spray forming–a promising process for making high-quality steels and alloys,” Metallurgist, 54, No. 9, 656–668 (2011).

  4. E. J. Lavernia and T. S. Srivatsan, “The rapid solidification processing of materials: science, principles, technology, advances, and applications,” J. Mater. Sci., 45, No. 2, 287–325 (2010).

    Article  Google Scholar 

  5. H. Hu, Z. H. Lee, D. R. White, and E. J. Lavernia, “On the evolution of porosity in spray-deposited tool steels,” Metall. Mater. Trans. A, 31, No. 3, 725–735 (2000).

    Article  Google Scholar 

  6. W. D. Cai and E. J. Lavernia, “Modeling of porosity during spray forming,” Mater. Sci. Eng. A, 226–228, 8–12 (1997).

    Article  Google Scholar 

  7. K. P. Mingrad, P. W. Alexander, S. J. Langrifge, et al., “Direct measurement of sprayform temperatures and the effect of liquid fraction on microstructure,” Acta Mater., 46, No. 10, 3511–3521 (1998).

    Article  Google Scholar 

  8. C. Cui, A. Schulz, J. Epp, and H. W. Zoch, “Deformation behavior of spray-formed hypereutectic Al–Si alloys,” J. Mater. Sci., 45, No. 10, 2798–2807 (2010).

    Article  Google Scholar 

  9. T. K. Ha, W.-J. Park, S. Ahn, and Y. W. Chang, “Fabrication of spray-formed hypereutectic Al–25Si alloy and its deformation behavior,” J. Mater. Process. Tech., 130–131. 691–695 (2002).

  10. Y.-D. Jia, F.-Y. Cao, Z.-L. Ning, et al., “Hot deformation behavior of spray formed Al–22Si–5Fe–3Cu–1Mg alloy,” Trans. Nonferrous Met. Soc. China, 21, Suppl. 2, s299–s303 (2011).

    Article  Google Scholar 

  11. M.-Y. Zhan, Z.-H. Chen, H.-G. Yan, and W.-J. Xia, “Deformation behavior of porous 4032 Al alloy preform prepared by spray deposition during hot rolling,” J. Mater. Process. Tech., 182, Nos. 1–3, 174–180 (2007).

  12. Y. Li, Y. Chen, H. Cui, et al., “Hot deformation behavior of a spray-deposited AZ31 magnesium alloy,” Rare Metals, 28, 91–97 (2009)

    Article  Google Scholar 

  13. N. Liu, Z. Li, and G. Zhang, “Hot deformation behavior and microstructure evolution of spray formed GH738 superalloy,” Rare Metals, 30, Suppl. 1, 388–391 (2011).

  14. F. W. Kang, G. Q. Zhang, J. F. Sun, et al., “Hot deformation behavior of a spray formed superalloy,” J. Mater. Process. Tech., 204, Nos. 1–3, 147–151 (2008).

  15. F.-W. Kang, G.-Q. Zhang, Z. Li, J.-F. Sun, “Hot deformation of spray formed nickel-base superalloy using processing maps,” Trans. Nonferrous Met. Soc. China, 18, No. 3, 531–535 (2008).

    Article  Google Scholar 

  16. C. Rodenburg, M. Krzyzanowski, J. H. Beynon, and W. M. Rainforth, “Hot workability of spray-formed AISI M3:2 high-speed steel,” Metall. Mater. Trans. A, 386, Nos. 1–2, 420–427 (2004).

  17. Y. C. Lin and G. Liu, “Effects of strain on the workability of a high srength low alloy steel in hot compression,” Metall. Mater. Trans. A, 523, Nos. 1–2, 139–144 (2009).

  18. I. Mejia, A. Bedolla-Jacuinde, C. Maldonado, and J. M. Cabrera, “Hot ductility behavior of a low carbon advanced high strength steel (AHSS) microalloyed with boron,” Metall. Mater. Trans. A, 528, Nos. 13–14, 4468–4474 (2011).

  19. J. Liu, H. Chang, R. Wu, et al., “Investigation on hot deformation behavior of AISI T1 high speed steel,” Mater. Charact., 45, No. 3, 175–186 (2000).

    Article  Google Scholar 

  20. C. A. C. Imbert and H. J. McQueen, “Dynamic recrystallization of A2 and M2 tool steels,” Mat. Sci. Eng. A, 313, Nos. 1–2, 104–116 (2001).

  21. C. A. C. Imbert and H. J. McQueen, “Peak strength, strain hardening and dynamic restoration of A2 and M2 tool steels in hot deformation,” Mat. Sci. Eng. A, 313, Nos. 1–2, 88–103 (2001).

  22. Z. Y. Liang, W. Huang, and M. X. Huang, “Suppression of dislocations at high strain rate deformation in a twinning-induced plasticity steel,” Mat. Sci. Eng. A, 628, 84–88 (2015).

    Article  Google Scholar 

  23. H. K. Yang, Y. Z. Tian, Z. J. Zhang, and Z. F. Zhang, “Different strain rate sensitivities between Fe–22Mn–0.6C and Fe–30Mn–3Si–3Al twinning-induced plasticity steels,” Mat. Sci. Eng., A, 655, 251–255 (2016).

    Article  Google Scholar 

  24. A. Momeni and K. Dehghani, “Characterization of hot deformation behavior of 410 martensitic stainless steel using constitutive equations and processing maps,” Mat. Sci. Eng. A, 527, Nos. 21–22, 5467–5473 (2010).

  25. D. Samantaray, S. Mandal, C. Phaniraj, and A. K. Bhaduri, “Flow behavior and microstructural evolution during hot deformation of AISI Type 316 L(N) austenitic stainless steel,” Mat. Sci. Eng. A, 528, Nos. 29–30, 8565–8572 (2011).

  26. Z. Zeng, L. Chen, F. Zhu, and X. Liu, “Dynamic recrystallization behavior of a heat-resistant martensitic stainless steel 403Nb during hot deformation,” J. Mater. Sci. Technol., 27, No. 10, 913–919 (2011).

    Article  Google Scholar 

  27. C. Zener and H. Hollomon, "Effect of strain-rate upon the plastic flow of steel," J. Appl. Phys., 15, No. 1, 22–27 (1944).

    Article  Google Scholar 

  28. J. Liu, H. Chang, R. Wu, T. Y. Hsu, and X. Ruan, “Investigation on hot deformation behavior of AISI T1 high speed steel,” Mater. Charact., 45, No. 3, 175–186 (2000).

    Article  Google Scholar 

  29. F. Yan, H. Shi, B. Jin, J. Fan, and Z. Xu, “Microstructure evolution during hot rolling and heat treatment of the spray formed Vanadis 4 clod work steel,” Mater. Charact., 59, No. 8, 1007–1014 (2008).

    Article  Google Scholar 

  30. E.-S. Lee, W.-J. Park, J. Y. Jung, and S. Ahn, “Solidification Microstructure and M2C Carbide Decomposition in a Spray-Formed High-Speed Steel,” Metall. Mater. Trans. A, 29, No. 5, 1395–1404 (1998).

    Article  Google Scholar 

  31. M. R. Ghomashchi and C. M. Sellars, “Microstructural changes in as-cast M2 grade high speed steel during hot forging,” Metall. Mater. Trans. A, 24, No. 10, 2171–2180 (1993).

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by Baoshan Iron&Steel Co., LTD, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunli Zhao.

Additional information

Published in Poroshkovaya Metallurgiya, Vol. 56, Nos. 1–2 (513), pp. 23–33, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Fan, J., Zhang, J. et al. The Hot Deformation Behavior of Spray-Formed High Speed Steel. Powder Metall Met Ceram 56, 17–25 (2017). https://doi.org/10.1007/s11106-017-9866-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-017-9866-8

Keywords

Navigation