Skip to main content
Log in

Properties of Cr–C–Al2O3 Deposits Prepared on a Cu Substrate Using Cr3+-Based Plating Baths

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Cr–C–Al2O3 deposits with different Al2O3 concentrations were successfully prepared on a Cu substrate from Cr3+-based electroplating baths. The microstructures of the Cr–C–Al2O3 deposits were examined using optical, scanning, and transmission electron microscopes. The hardness values, the corrosion and wear resistance of the Cr–C and Cr–C–Al2O3 deposited specimens were evaluated. Based on the experimental results, Al2O3 nanoparticles were uniformly distributed within the Cr–C deposits after electroplating in a Cr3+-based plating bath. The hardness values of the Cr–C–Al2O3 deposits increased with the Al2O3 concentration in the electroplating bath. The corrosion resistance of the Cr–C-deposited specimens could be noticeably improved by adding Al2O3 nanoparticles to the deposit. This is attributed to decrease in the number of cracks in the Cr–C specimens codeposited with Al2O3 nanoparticles. According to the transmission electron microscopy study, the crack-reduction mechanism in the Cr–C–Al2O3 deposits was proposed. The Cr–C–Al2O3 deposited specimen, which was prepared in an electroplating bath with an Al2O3 concentration of 50 g/L, had a relatively high corrosion resistance compared to the other specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Goldoni, A. Caglieri, D. Poli, et al., “Determination of hexavalent chromium in exhaled breath condensate and environmental air among chrome plating workers,” Anal. Chim. Acta, 562, 229–235 (2006).

    Article  Google Scholar 

  2. S. Podgoric, B. J. Jones, R. Bulpett, et al., “Diamond-like carbon/epoxy low-friction coatings to replace electroplated chromium,” Wear, 267, 996–1001 (2009).

    Article  Google Scholar 

  3. T. Sahraoui, N. Fenineche, G. Montavon, et al., “Alternative to chromium: characteristics and wear behavior of HVOF coatings for gas turbine shafts repair (heavy-duty),” J. Mater. Process. Technol., 152, 43–55 (2004).

    Article  Google Scholar 

  4. Y. B. Song and D.-T. Chin, “Current efficiency and polarization behavior of trivalent chromium electrodeposition process,” Electrochim. Acta, 48, 349–356 (2002).

    Article  Google Scholar 

  5. S. C. Kwon, M. Kim, S. U. Park, et al., “Characterization of intermediate Cr–C layer fabricated by electrodeposition in hexavalent and trivalent chromium baths,” Surf. Coat. Technol., 183, 151–156 (2004).

    Article  Google Scholar 

  6. C. W. Chien, C. L. Liu, F. J. Chen, et al., “Microstructure and properties of carbon–sulfur-containing chromium deposits electroplated in trivalent chromium baths with thiosalicylic acid,” Electrochim. Acta, 72, 74–80 (2012).

    Article  Google Scholar 

  7. C. A. Huang, Y. W. Liu, C. Yu, et al., “Role of carbon in the chromium deposit electroplated from a trivalent chromium-based bath,” Surf. Coat. Technol., 205, 3461–3466 (2011).

    Article  Google Scholar 

  8. C. A. Huang, Y. W. Liu, and C. H. Chuang, “The hardening mechanism of a chromium–carbon deposit electroplated from a trivalent chromium-based bath,” Thin Solid Films, 517, 4902–4904 (2009).

    Article  Google Scholar 

  9. W. X. Chen, J. P. Tu, H. Y. Gan, et al., “Electroless preparation and tribological properties of Ni–P–Carbon nanotube composite coatings under lubricated condition,” Surf. Coat. Technol., 160, 68–73 (2002).

    Article  Google Scholar 

  10. I. Lyo, H. Ahn, and D. Lim, “Microstructure and tribological properties of plasma-sprayed chromium oxide–molybdenum oxide composite coatings,” Surf. Coat. Technol., 163–164, 413–421 (2003).

    Article  Google Scholar 

  11. T. Borkar and S. P. Harimkar, “Effect of electrodeposition conditions and reinforcement content on microstructure and tribological properties of nickel composite coatings,” Surf. Coat. Technol., 205, 4124–4134 (2011).

    Article  Google Scholar 

  12. L. Du, B. Xu, S. Dong, et al., “Preparation, microstructure and tribological properties of nano-Al2O3/Ni brush plated composite coatings,” Surf. Coat. Technol., 192, 311–316 (2005).

    Article  Google Scholar 

  13. C. A. Huang, U. W. Liu, and C. H. Chuang, “Role of nickel undercoat and reduction-flame heating on the mechanical properties of Cr–C deposit electroplated from a trivalent chromium based bath,” Surf. Coat. Technol., 203, 2921–2926 (2009).

    Article  Google Scholar 

  14. Z. Zeng, L. Wang, A. Liang, et al., “Tribological and electrochemical behavior of thick Cr–C alloy coatings electrodeposited in trivalent chromium bath as an alternative to conventional Cr coatings,” Electrochim. Acta, 52, 1366–1373 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Science Council of the Republic of China (ROC) for their support of this work under Contract No.: 98-2221-E-182-016-MY2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching An Huang.

Additional information

Published in Poroshkovaya Metallurgiya, Vol. 55, Nos. 9–10 (511), pp. 116–123, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, C.A., Chen, J.Y., Chuang, C.H. et al. Properties of Cr–C–Al2O3 Deposits Prepared on a Cu Substrate Using Cr3+-Based Plating Baths. Powder Metall Met Ceram 55, 596–602 (2017). https://doi.org/10.1007/s11106-017-9844-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-017-9844-1

Keywords

Navigation