Skip to main content
Log in

Mixing enthalpies of liquid alloys and thermodynamic assessment of the Cu–Fe–Co system

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

The mixing enthalpies of ternary Cu–Fe–Co liquid alloys are studied by the calorimetric method at 873 K and x Co = 0–0.55. Thermodynamic assessments of the Fe–Co and Cu–Fe–Co systems are carried out with the CALPHAD method. A set of self-consistent thermodynamic parameters of the phases is obtained using data on the mixing enthalpies established in this study and published information on phase transformations. Isothermal and vertical sections of the phase diagram, liquidus and solidus surfaces, and metastable miscibility gap for overcooled liquid alloys are calculated. The undercooling degrees for the metastable liquid phase separation and temperature–composition ranges of the formation of the supersaturated solid solutions during the liquid quenching have been assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. I. Hong, J. S. Song, and H. S. Kim, “Thermomechanical processing and properties of Cu–9Fe–1.2Co microcomposite wires,” Scr. Mat., 45, 1295–1300 (2001).

    Article  CAS  Google Scholar 

  2. M. del Villar, P. Muro, J. M. Sanchez, et al., “Consolidation of diamond tools using Cu–Co–Fe based alloys as metallic binders,” Powder Met., 44, No. 1, 82–90 (2001).

    Article  Google Scholar 

  3. J. W. Chang, P. C. Andricacos, B. Petek, and L. T. Romankiw, “Electrodeposition of high Ms CoFeCu alloys for recording heads,” Electrochem. Soc. Inc., 92, No. 10, 275–287 (1992).

    Google Scholar 

  4. F. Wang, Z. D. Zhang, T. Zhao, et al., “Giant magnetoresistance in Co–Fe–Cu granular ribbons,” J. Phys. Condens. Matter., 12, No. 22, 4829–4835 (2000).

    Article  CAS  Google Scholar 

  5. R. Singha, A. Dhar, D. Bhattacharya, et al., “Correlation between microstructure and electronic behavior in rapidly quenched Fe-substituted granular Cu–Co alloys,” Thin Solid Films, 505, No. 1–2, 157–160 (2006).

    Article  CAS  Google Scholar 

  6. Y. G. Yoo, W. T. Kim, S. C. Yu, and Y. D. Kim, “Temperature dependence of magnetization in nanocrystalline Cu–Fe–Co alloys,” J. Magn. Magn. Mater., 158, 233–234 (1996).

    Article  Google Scholar 

  7. R. Larde and J. M. Breton, “Influence of the milling conditions on the magnetoresistive properties of a Cu80(Fe0.7Co0.3)20 granular alloy elaborated by mechanical alloying,” J. Magn. Magn. Mater., 290–291, No. 2, 1120–1122 (2005).

    Article  Google Scholar 

  8. H. Ohtani, H. Suda, and K. Ishida, “Solid/liquid equilibria in Fe–Cu based ternary systems,” ISIJ Int., 37, No. 3, 207–216 (1997).

    Article  CAS  Google Scholar 

  9. W. Banda, G. A. Georgalli, C. Lang, and J. J. Eksteen, “Liquidus temperature determination of the Fe–Co–Cu system in the Fe-rich corner by thermal analysis,” J. All. Compd., 461, 178–182 (2008).

    Article  CAS  Google Scholar 

  10. C.-D. Cao and G. P. Goerler, “Direct measurement of the metastable liquid miscibility gap in Fe–Co–Cu ternary alloy system,” Chin. Phys. Lett., 22, No. 2, 482–484 (2005).

    Article  CAS  Google Scholar 

  11. A. Munitz, A. M. Bamberger, S. Wannaparhun, and R. Abbaschian, “Effects of supercooling and cooling rate on the microstructure of Cu–Co–Fe alloys,” J. Mater. Sci., 41, No. 10, 2749–2759 (2006).

    Article  CAS  Google Scholar 

  12. F. Dai, C. Cao, and B. Wei, “Phase separation and rapid solidification of liquid Cu60Fe30Co10 ternary peritectic alloy,” Sci. Chin. Ser. G. Phys. Mech. Astron., 50, No. 4, 509–518 (2007).

    Article  CAS  Google Scholar 

  13. D. I. Kim and R. Abbaschian, “The metastable liquid miscibility gap in Cu–Co–Fe alloys,” J. Phase Equilib., 21, No. 1, 25–31 (2000).

    Article  CAS  Google Scholar 

  14. S. Curiotto, L. Battezzati, E. Johnson, et al., “The liquid metastable miscibility gap in the Cu–Co–Fe system,” J. Mater. Sci., 43, No. 9, 3253–3258 (2008).

    Article  CAS  Google Scholar 

  15. M. Bamberger, A. Munitz, L. Kaufman, and R. Abbaschian, “Evaluation of the stable and metastable Cu–Co–Fe phase diagrams,” Calphad, 26, No. 3, 575–384 (2002).

    Article  Google Scholar 

  16. C. P. Wang, X. J. Liu, I. Ohnuma, et al., “Phase equilibria in Fe–Cu–X (X: Co, Cr, Si, V) ternary systems,” J. Phase Equilib., 23, No. 3, 236–245 (2002).

    Article  CAS  Google Scholar 

  17. M. Palumbo, S. Curiotto, and L. Battezzati, “Thermodynamic analysis of the stable and metastable Co–Cu and Co–Cu–Fe phase diagrams,” Calphad, 30, No. 2, 171–178 (2006).

    Article  CAS  Google Scholar 

  18. M. A. Turchanin, P. G. Agraval, and I. V. Nikolaenko, “Thermodynamics of alloys and phase equilibria in the copper–iron system,” J. Phase Equilib., 24, No. 4, 307–319 (2003).

    Article  CAS  Google Scholar 

  19. M. A. Turchanin and P. G. Agraval, “Phase equilibria and thermodynamics of binary copper systems with 3d-metals. V. Copper–cobalt system,” Powder Metall. Met. Ceram., 46, No. 1–2, 77–89 (2007).

    Article  CAS  Google Scholar 

  20. T. B. Massalski, H. Okamoto, P. R. Subramanian, and L. Kacprzak, Binary Alloys Phase Diagrams, Materials Information Society, ASM International (1990), p. 3589.

    Google Scholar 

  21. W. Jellingshaus, “Iron–cobalt–copper alloys,” Metallurgist, 10, 180–182 (1936).

    Google Scholar 

  22. W. R. Maddocks and G. E. Claussen, Iron Steel Inst. Spec. Rep., 14, 97–124 (1936).

    Google Scholar 

  23. K. Oikawa, Thermodynamic Assessment of the Co–Cu–X (Cr, Mn, Fe, Ni) Systems, Thesis of Master of Engineering, Tohoku University, Japan (1981) [Cited in [16]].

  24. M. Jiang and S. Hao, “The determination and illustration of a 1000 degree C isothermal phase diagram of Fe–Ni–Co–Cu system,” in: Proc. 6th Nation. Symp. Phase Diagrams (November 20–24, 1990, Shenyang, China), Shenyang (1990), pp. 150–152 [Cited in [16]].

  25. S. Bein, C. Colinet, and M. Durand-Charre, “CVM calculation of the ternary system Co–Cu–Fe,” J. All. Comp., 313, 133–143 (2000).

    Article  CAS  Google Scholar 

  26. M. Turchanin and T. Velikanova, “Cobalt–copper–iron,” in: Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, W. Martinssen (ed.), New Series. Group IV: Physical Chemistry, G. Effenberg and S. Ilyenko (eds.), Ternary Alloy Systems, Phase Diagrams, Crystallographic and Thermodynamic Data, Springer-Verlag, Berlin, Heidelberg (2007), Vol. 11D2, pp. 446–471.

  27. I. V. Nikolaenko and M. A. Turchanin, “Enthalpies of formation of liquid binary (copper + iron, cobalt, and nickel) alloys,” Metall. Mater. Trans. B, 28B, No. 6, 1119–1130 (1997).

    Article  CAS  Google Scholar 

  28. M. A. Turchanin, A. R. Abdulov, P. G. Agraval, and L. A. Dreval’, “Enthalpy of mixing of liquid Cu–Ni– Ti alloys at 1873 K,” Russ. Metall. (Met.), No. 6, 500–504 (2006).

  29. N. Saunders and A. P. Miodownik, “CALPHAD (calculation of phase diagrams),” in: R.W. Cahn (ed.), A Comprehensive Guide, Pergamon Materials Series, Pergamon Press, Oxford (1998), Vol. 1, p. 496.

  30. Y. M. Muggianu, M. Gambino, and J. P. Bros, “Enthalpies of formation of liquid alloys bismuth–galliumtin at 723 K. Choice of an analytical representation of integral and partial excess functions of mixing,” J. Chimie Phys., 72, No. 1, 83–88 (1975).

    CAS  Google Scholar 

  31. M. Hillert and M. Jarl, “A model for alloying effects in ferromagnetic metals,” Calphad, 2, 227–238 (1978).

    Article  CAS  Google Scholar 

  32. A. T. Dinsdale, “SGTE data for pure elements,” Calphad, 15, No. 4, 317–425 (1991).

    Article  CAS  Google Scholar 

  33. I. Ohnuma, H. Enoki, O. Ikeda, et al., “Phase equilibria in the Fe–Co binary system,” Acta Mater., 50, 379–393 (2002).

    Article  CAS  Google Scholar 

  34. G. B. Harris and W. Hume-Rothery, “The liquidus–solidus relations in the system iron–cobalt in the range 0–30 at.% Co,” J. Iron Steel Inst., 174, 212 (1953).

    CAS  Google Scholar 

  35. B. Predel and R. Mohs, “Etude thermodynamique des systemes Fe–Ni et Fe–Co,” Arch. Eisenhutt., 41, No. 2, 143 (1970).

    CAS  Google Scholar 

  36. W. C. Ellis and E. S. Greiner, “Equilibrium relations in the solid state of the iron–cobalt system,” Trans. Am. Soc. Met., 29, 415–434 (1941).

    CAS  Google Scholar 

  37. A. S. Normanton, P. E. Bloomfield, F. R. Sale, and B. B. Argent, “A calorimetric study of iron–cobalt alloys,” Met. Sci., 9, No. 11, 510–517 (1975).

    CAS  Google Scholar 

  38. Y. Tozaki, Y. Iguchi, S. Banya, and T. Fuwa, “Heat of mixing of iron alloys,” in: Proc. Int. Symp. Met. Chemistry, Appl. Ferrous Met. (July 19–21, 1971, Shaffield), Shaffield (1971), pp. 130–132.

  39. Y. Iguchi, Y. Tozaki, M. Kakizaki, et al., “A calorimetric study of heats of mixing of liquid iron alloys,” Tetsu to Hagane, 67, No. 7, 925–932 (1981).

    CAS  Google Scholar 

  40. N. Maruyama and S. Banya, “Measurement of activities in liquid Fe–Ni, Fe–Co and Ni–Co alloys by a transportation method,” J. Jpn. Inst. Met., 42, No. 10, 992–999 (1978).

    CAS  Google Scholar 

  41. M. Sumida and W. Kurz, “Peritectic equilibrium in Fe–Co alloys,” Z. Metallkd., 93, No. 11, 1154–1156 (2002).

    CAS  Google Scholar 

  42. T. G. Woodcock, R. Hermann, and W. Loeser, “Development of a metastable phase diagram to describe solidification in undercooled Fe–Co melts,” Calphad, 31, No. 2, 256–263 (2007).

    Article  CAS  Google Scholar 

  43. O. Crisan, J. M. Le Breton, A. Jianu, et al., “Structural and magnetic properties of magnetoresistive Cu–Co–Fe ribbons,” J. Magn. Magn. Mater., 197, 467–469 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Turchanin.

Additional information

Translated from Poroshkovaya Metallurgiya, Vol. 50, No. 1–2 (477), pp. 123–146, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turchanin, M.A., Dreval, L.A., Abdulov, A.R. et al. Mixing enthalpies of liquid alloys and thermodynamic assessment of the Cu–Fe–Co system. Powder Metall Met Ceram 50, 98–116 (2011). https://doi.org/10.1007/s11106-011-9307-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-011-9307-z

Keywords

Navigation