Skip to main content
Log in

Expression of Withania somnifera Steroidal Glucosyltransferase gene Enhances Withanolide Content in Hairy Roots

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

In Withania somnifera, sterol molecules of immense medicinal value are diversified by means of glycosylation. Identifying sterol glycosyltransferases provides an imperative insight of diverse sterol modifications, thereby helping to comprehend the underlying plant mechanisms. In the present study, one of the W. somnifera sterol glycosyltransferase-4 (Ws-Sgtl4) gene was transformed into the W. somnifera leaf explant through Agrobacterium rhizogene. Transformed W. Somnifera Ws-Sgtl4 leaf explants were subjected to hairy root induction and analyzed for biomass accumulation. The analysis of Ws-Sgtl4 gene expression was performed at different time exposures with the application of salicylic acid and methyl jasmonate. The elicitation of W. somnifera hairy root expressing the Ws-Sgtl4 gene was also evaluated for the enhancement if any, in the total withanolide yield as well as the withanolides-A contents. The results suggested that Ws-Sgtl4 gene expression enhanced the production of total withanolide yield and withanolides-A in the hairy root culture of W. somnifera in the response to the elicitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bandyopadhyay M, Jha S, Tepfer D (2007) Changes in morphological phenotypes and withanolide composition of Ri-transformed roots of Withania somnifera. Plant Cell Rep 26:599–609. doi:10.1007/s00299-006-0260-0

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya SK, Satyan KS, Ghosal S (1997) Antioxidant activity of glycowithanolides from Withania somnifera Indian. J Exp Biol 35:236–239

    CAS  Google Scholar 

  • Bhattacharya A, Ghosal S, Bhattacharya SK (2001) Anti-oxidant effect of Withania somnifera glycowithanolides in chronic footshock stress-induced perturbations of oxidative free radical scavenging enzymes and lipid peroxidation in rat frontal cortex and striatum. J Ethnopharmacol 74:1–6

    Article  CAS  PubMed  Google Scholar 

  • Bowles D, Lim EK, Poppenberger B, Vaistij FE (2006) Glycosyltransferases of lipophilic small molecules. Ann Rev Plant Biol 57:567–597. doi:10.1146/annurev.arplant.57.032905.105429

    Article  CAS  Google Scholar 

  • Chatterjee S et al (2010) Comprehensive metabolic fingerprinting of Withania somnifera leaf and root extracts. Phytochemistry 71:1085–1094. doi:10.1016/j.phytochem.2010.04.001

    Article  CAS  PubMed  Google Scholar 

  • Chaturvedi P, Mishra M, Akhtar N, Gupta P, Mishra P, Tuli R (2012) Sterol glycosyltransferases-identification of members of gene family and their role in stress in Withania somnifera. Mol Biol Rep 39:9755–9764

    Article  CAS  PubMed  Google Scholar 

  • Chaurasiya ND, Uniyal GC, Lal P, Misra L, Sangwan NS, Tuli R, Sangwan RS (2008) Analysis of withanolides in root and leaf of Withania somnifera by HPLC with photodiode array and evaporative light scattering detection. Phytochem Anal 19:148–154. doi:10.1002/pca.1029

    Article  PubMed  Google Scholar 

  • Chaurasiya ND, Sangwan NS, Sabir F, Misra L, Sangwan RS (2012) Withanolide biosynthesis recruits both mevalonate and DOXP pathways of isoprenogenesis in Ashwagandha Withania somnifera L. (Dunal). Plant Cell Rep 31:1889–1897. doi:10.1007/s00299-012-1302-4

    Article  CAS  PubMed  Google Scholar 

  • Doma M, Abhayankar G, Reddy VD, Kishor PB (2012) Carbohydrate and elicitor enhanced withanolide (withaferin A and withanolide A) accumulation in hairy root cultures of Withania somnifera (L.)

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  CAS  PubMed  Google Scholar 

  • Grunwald C (1974) Sterol molecular modifications influencing membrane permeability. Plant Physiol 54:624–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hart CM, Fischer B, Neuhaus JM, Meins F Jr (1992) Regulated inactivation of homologous gene expression in transgenic Nicotiana sylvestris plants containing a defense-related tobacco chitinase gene. Mol Gen Genet 235:179–188

    Article  CAS  PubMed  Google Scholar 

  • Hooykass PJJ, Klapwijk PM, Nuti PM, Shilperoot RA, Rorsch A (1977) Transfer of the Agrobacterium tumefaciens Ti-plasmid to a virulent Agrobacteria and Rhizobium explanta. J Gen Microbiol 98:477–487

    Article  Google Scholar 

  • Khedgikar V et al (2013) Withaferin A: a proteasomal inhibitor promotes healing after injury and exerts anabolic effect on osteoporotic bone. Cell Death Dis 4:e778. doi:10.1038/cddis.2013.294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim O, Bang K, Kim Y, Hyun D, Kim M, Cha S (2009) Upregulation of ginsenoside and gene expression related to triterpene biosynthesis in ginseng hairy root cultures elicited by methyl jasmonate Plant Cell. Tissue Organ Cult (PCTOC) 98:25–33. doi:10.1007/s11240-009-9535-9

    Article  CAS  Google Scholar 

  • Kim YS, Cho JH, Park S, Han JY, Back K, Choi YE (2011) Gene regulation patterns in triterpene biosynthetic pathway driven by overexpression of squalene synthase and methyl jasmonate elicitation in Bupleurum falcatum. Planta 233:343–355. doi:10.1007/s00425-010-1292-9

    Article  CAS  PubMed  Google Scholar 

  • Kuzma L, Bruchajzer E, Wysokinska H (2009) Methyl jasmonate effect on diterpenoid accumulation in < i > Salvia sclarea</i > hairy root culture in shake flasks and sprinkle bioreactor. Enzym Microb Technol 44:406–410

    Article  CAS  Google Scholar 

  • Madina BR, Sharma LK, Chaturvedi P, Sangwan RS, Tuli R (2007a) Purification and characterization of a novel glucosyltransferase specific to 27beta-hydroxy steroidal lactones from Withania somnifera and its role in stress responses. Biochim Biophys Acta 1774:1199–1207. doi:10.1016/j.bbapap.2007.06.015

    Article  CAS  PubMed  Google Scholar 

  • Madina BR, Sharma LK, Chaturvedi P, Sangwan RS, Tuli R (2007b) Purification and physico-kinetic characterization of 3beta-hydroxy specific sterol glucosyltransferase from Withania somnifera (L) and its stress response. Biochim Biophys Acta 1774:392–402. doi:10.1016/j.bbapap.2006.12.009

    Article  CAS  PubMed  Google Scholar 

  • Marchler-Bauer A et al (2003) CDD: a curated Entrez database of conserved domain alignments. Nucleic Acids Res 31:383–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin D, Tholl D, Gershenzon J, Bohlmann J (2002) Methyl jasmonate induces traumatic resin ducts, terpenoid resin biosynthesis, and terpenoid accumulation in developing xylem of Norway spruce stems. Plant Physiol 129:1003–1018. doi:10.1104/pp. 011001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matzke MA, Aufsatz W, Kanno T, Mette MF, Matzke AJ (2002) Homology-dependent gene silencing and host defense in plants. Adv Genet 46:235–275

    Article  CAS  PubMed  Google Scholar 

  • Meyer P, Saedler H (1996) Homology-dependent gene silencing in plants. Annu Rev Plant Physiol Plant Mol Biol 47:23–48. doi:10.1146/annurev.arplant.47.1.23

    Article  CAS  PubMed  Google Scholar 

  • Mirjalili MH, Moyano E, Bonfill M, Cusido RM, Palazon J (2009) Steroidal lactones from Withania somnifera, an ancient plant for novel medicine. Molecules 14:2373–2393. doi:10.3390/molecules14072373

    Article  CAS  PubMed  Google Scholar 

  • Mizukami H, Tabira Y, Ellis BE (1993) Methyl jasmonate-induced rosmarinic acid biosynthesis in Lithospermum erythrorhizon cell suspension cultures. Plant Cell Rep 12:706–709. doi:10.1007/BF00233424

    Article  CAS  PubMed  Google Scholar 

  • Mohan R et al (2004) Withaferin A is a potent inhibitor of angiogenesis. Angiogenesis 7:115–122. doi:10.1007/s10456-004-1026-3

    Article  CAS  PubMed  Google Scholar 

  • Mote RN, Pillai MM, Pawar BK (2010) Antioxidant effect of gycowithanolides on esterase activity in salivary glands of d-galactose stressed mice. Int J Biol Med Res 1:193–201

    Google Scholar 

  • Mulabagal V et al (2009) Withanolide sulfoxide from Aswagandha roots inhibits nuclear transcription factor-kappa-B, cyclooxygenase and tumor cell proliferation. Phytother Res 23:987–992. doi:10.1002/ptr.2736

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murthy HN et al (2008) Establishment of Withania somnifera hairy root cultures for the production of withanolide A. J Integr Plant Biol 50:975–981

    Article  CAS  PubMed  Google Scholar 

  • Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans. Plant Cell 2:279–289. doi:10.1105/tpc.2.4.279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey V et al (2015) Comparative interactions of withanolides and sterols with two members of sterol glycosyltransferases from Withania somnifera. BMC Bioinforma 16:120. doi:10.1186/s12859-015-0563-7

    Article  Google Scholar 

  • Rai D, Bhatia G, Sen T, Palit G (2003) Anti-stress effects of Ginkgo biloba and Panax ginseng: a comparative study. J Pharmacol Sci 93:458–464

    Article  CAS  PubMed  Google Scholar 

  • Rivas-San Vicente M, Plasencia J (2011) Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot 62:3321–3338. doi:10.1093/jxb/err031

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-May E, De-la-Pena C, Galaz-Avalos RM, Lei Z, Watson BS, Sumner LW, Loyola-Vargas VM (2011) Methyl jasmonate induces ATP biosynthesis deficiency and accumulation of proteins related to secondary metabolism in Catharanthus roseus (L.) G. hairy roots. Plant Cell Physiol 52:1401–1421. doi:10.1093/pcp/pcr086

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a Laboratory Manual vol 2nd, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Shabani L, Ehsanpour AA, Asghari G, Emami J (2009) Glycyrrhizin production by in vitro cultured Glycyrrhiza glabra elicited by methyl jasmonate and salicylic acid. Russ J Plant Physiol 56:621–626

    Article  CAS  Google Scholar 

  • Singh H, Dixit S, Verma PC, Singh PK (2014) Evaluation of total phenolic compounds and insecticidal and antioxidant activities of tomato hairy root extract. J Agric Food Chem 62:2588–2594. doi:10.1021/jf405695y

    Article  CAS  PubMed  Google Scholar 

  • Singh A et al (2015) Expression of rabies glycoprotein and ricin toxin B chain (RGP-RTB) fusion protein in tomato hairy roots: a step towards oral vaccination for rabies. Mol Biotechnol 57:359–370. doi:10.1007/s12033-014-9829-y

    Article  CAS  PubMed  Google Scholar 

  • Sivanandhan G et al (2012a) Chitosan enhances withanolides production in adventitious root cultures of <i> Withania somnifera</i> (L.) Dunal. Ind Crop Prod 37:124–129

    Article  CAS  Google Scholar 

  • Sivanandhan G et al. (2012b) A promising approach on biomass accumulation and withanolides production in cell suspension culture of Withania somnifera (L.) Dunal Protoplasma:1–14

  • Sivanandhan G et al. (2013) Increased production of withanolide A, withanone, and withaferin A in hairy root cultures of Withania somnifera (L.) Dunal elicited with methyl jasmonate and salicylic acid Plant Cell, Tissue and Organ Culture (PCTOC):1–9

  • Smetanska I (2008) Production of secondary metabolites using plant cell cultures. Adv Biochem Eng Biotechnol 111:187–228. doi:10.1007/10_2008_103

    CAS  PubMed  Google Scholar 

  • Smith CJ, Watson CF, Bird CR, Ray J, Schuch W, Grierson D (1990) Expression of a truncated tomato polygalacturonase gene inhibits expression of the endogenous gene in transgenic plants. Mol Gen Genet 224:477–481

    Article  CAS  PubMed  Google Scholar 

  • Srivastava R et al (2014a) Distinct role of core promoter architecture in regulation of light-mediated responses in plant genes. Mol Plant 7:626–641. doi:10.1093/mp/sst146

    Article  CAS  PubMed  Google Scholar 

  • Srivastava R, Srivastava R, Singh UM (2014b) Understanding the patterns of gene expression during climate change. In: Climate Change Effect on Crop Productivity. CRC Press, 279–328

  • Sun JQ, Jiang HL, Li CY (2011) Systemin/Jasmonate-mediated systemic defense signaling in tomato. Mol Plant 4:607–615. doi:10.1093/mp/ssr008

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H et al (2005) Methyl jasmonate and yeast elicitor induce differential transcriptional and metabolic re-programming in cell suspension cultures of the model legume Medicago truncatula. Planta 220:696–707. doi:10.1007/s00425-004-1387-2

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi:10.1093/molbev/msr121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thakur M, Sohal BS (2013) Role of elicitors in inducing resistance in plants against pathogen infection: a review ISRN Biochemistry

  • Tuli R, Sangwan RS (eds) (2009) Ashwagandha (Withania somnifera): A model Indian Medicinal Plant Council of Scientific and Industrial Research, New Delhi

  • Udomsuk L, Jarukamjorn K, Tanaka H, Putalun W (2011) Improved isoflavonoid production in Pueraria candollei hairy root cultures using elicitation. Biotechnol Lett 33:369–374. doi:10.1007/s10529-010-0417-3

    Article  CAS  PubMed  Google Scholar 

  • Vazquez-Flota F, Hernandez-Domınguez E, de Lourdes M-HM, Monforte-Gonzalez M (2009) A differential response to chemical elicitors in Catharanthus roseus in vitro cultures. Biotechnol Lett 31:591–595

    Article  CAS  PubMed  Google Scholar 

  • Verma PC, Singh D, Lu R, Gupta MM, Banerjee S (2002) In vitro studies in Plumbago zeylanica: rapid micropropagation and establishment of higher plumbagin yielding hairy root cultures. J Plant Physiol 159:547–552. doi:10.1078/0176-1617-00518

    Article  CAS  Google Scholar 

  • Verma PC, ur Rahman L, Negi AS, Jain DC, Khanuja SPS, Banerjee S (2007) Agrobacterium rhizogenes-mediated transformation of Picrorhiza kurroa Royle ex Benth.: establishment and selection of superior hairy root clone. Plant Biotechnol Rep 1:169–174

    Article  Google Scholar 

  • Winters M (2006) Ancient medicine, modern use: Withania somnifera and its potential role in integrative oncology. Altern Med Rev 11:269–277

    PubMed  Google Scholar 

  • Zhou L, Cao X, Zhang R, Peng Y, Zhao S, Wu J (2007) Stimulation of saponin production in Panax ginseng hairy roots by two oligosaccharides from Paris polyphylla var. yunnanensis. Biotechnol Lett 29:631–634. doi:10.1007/s10529-006-9273-6

    Article  CAS  PubMed  Google Scholar 

  • Zhou ML, Zhu XM, Shao JR, Tang YX, Wu YM (2011) Production and metabolic engineering of bioactive substances in plant hairy root culture. Appl Microbiol Biotechnol 90:1229–1239. doi:10.1007/s00253-011-3228-0

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Director, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research, Government of India, for providing the research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen C. Verma.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Vibha Pandey and Rakesh Srivastava contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Primer used in the experiments. (DOCX 17 kb)

Fig. S1

Domain analysis and phylogenetic relationship of Ws-SGTL4 proteins among various members of the plants. (PPTX 513 kb)

Fig. S2

Alignment between Arabidopsis thaliana and W. somnifera Sterol glycosyltransferases proteins. (PPTX 611 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, V., Srivastava, R., Akhtar, N. et al. Expression of Withania somnifera Steroidal Glucosyltransferase gene Enhances Withanolide Content in Hairy Roots. Plant Mol Biol Rep 34, 681–689 (2016). https://doi.org/10.1007/s11105-015-0955-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-015-0955-x

Keywords

Navigation