Skip to main content

Advertisement

Log in

Single or Multiple Gene Silencing Directed by U6 Promoter-Based shRNA Vectors Facilitates Efficient Functional Genome Analysis in Medicago truncatula

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Short hairpin RNA (shRNA) expression vectors are an effective means to deliver double-stranded RNA that mediates sequence-specific cleavage of target transcripts in RNA interference (RNAi). Previously, we constructed shRNA expression vectors based on U6 small nuclear RNA (snRNA) gene promoters of Medicago truncatula. To facilitate screening of shRNA candidates, a protoplast-based dual luciferase assay system was developed, which consists of a shRNA-expressing effector plasmid and a target gene-carrying reporter plasmid. RNAi efficiency of a given shRNA could be measured by comparing two luciferase activities derived from transcripts with an intact or interrupted 3′ untranslated region as a result of RNAi. Using a multiple U6-shRNA cassette plasmid that enables targeting of multiple genes simultaneously, the expression of two Δ1-pyrroline-5-carboxylate synthetase genes (MtP5CS1 and MtP5CS2) was silenced with a U6 plasmid carrying two 27-nucleotide-stem shRNA cassettes targeting each gene. The decreased transcript levels were accompanied by decreased protein levels and decreased free proline contents. To examine possible U6-shRNA-mediated RNAi in nodules, two remorin-encoding MtREM genes were targeted by single and double U6-shRNA plasmids. Silencing of MtREM2.2, an essential nodulation gene, MtREM1.1, an uncharacterized gene, or both inhibited nodule formation in transgenic roots. Moreover, M. truncatula roots transformed with a suppressor-overexpresser construct wherein MtREM2.2-targeting U6-shRNA and GmREM2.3-overexpressing cassettes were placed tandemly showed decreased MtREM2.2 transcripts yet survived nitrogen-free medium, indicating complementation of MtREM2.2 with the overexpressed soybean gene. These results demonstrate that U6 promoter-based shRNA-expressing plasmids are valuable for multiple gene functional analyses in protoplasts and nodules of M. truncatula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a,b
Fig. 2a–d
Fig. 3a–c
Fig. 4a–g
Fig. 5a–d

Similar content being viewed by others

References

  • Akashi H, Miyagishi M, Kurata H, Nagata T, Taira K (2001) A simple and rapid system for the quantitation of RNA interference in plant cultured cells. Nucleic Acids Res Suppl(1):235–236

  • Alvarez JP, Pekker I, Goldshmidt A, Blum E, Amsellem Z, Eshed Y (2006) Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. Plant Cell 18:1134–1151

    Article  PubMed  CAS  Google Scholar 

  • An CI, Sawada A, Kawaguchi Y, Fukusaki E, Kobayashi A (2005) Transient RNAi induction against endogenous genes in Arabidopsis protoplasts using in vitro-prepared double-stranded RNA. Biosci Biotechnol Biochem 69:415–418

    Article  PubMed  CAS  Google Scholar 

  • Armengaud P, Thiery L, Buhot N, Grenier-De March G, Savouré A (2004) Transcriptional regulation of proline biosynthesis in Medicago truncatula reveals developmental and environmental specific features. Physiol Plant 120:442–450

    Article  PubMed  CAS  Google Scholar 

  • Bart R, Chern M, Park CJ, Bartley L, Ronald PC (2006) A novel system for gene silencing using siRNAs in rice leaf and stem-derived protoplasts. Plant Methods 2:13

    Article  PubMed  Google Scholar 

  • Bates LS (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Baulcombe DC (2004) RNA silencing in plants. Nature 431:356–363

    Article  PubMed  CAS  Google Scholar 

  • Boisson-Dernier A, Chabaud M, Garcia F, Becard G, Rosenberg C, Barker DG (2001) Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Mol Plant Microbe Interact 14:695–700

    Article  PubMed  CAS  Google Scholar 

  • Boivin C, Camut S, Malpica CA, Truchet G, Rosenberg C (1990) Rhizobium meliloti genes encoding catabolism of trigonelline are induced under symbiotic condition. Plant Cell 2:1157–1170

    PubMed  CAS  Google Scholar 

  • Bucher E, Lohuis D, van Poppel PMJA, Geerts-Dimitriadou C, Goldbach R, Prins M (2006) Multiple virus resistance at a high frequency using a single transgene construct. J Gen Virol 87:3697–3701

    Article  PubMed  CAS  Google Scholar 

  • Christey MC (2001) Use of Ri-mediated transformation for production of transgenic plants. In Vitro Cell Dev Biol Plant 37:687–700

    Article  CAS  Google Scholar 

  • Das G, Henning D, Wright D, Reddy R (1988) Upstream regulatory elements are necessary and sufficient for transcription of a U6 RNA gene by RNA polymerase III. EMBO J 7:503–512

    PubMed  CAS  Google Scholar 

  • de Jong F, Mathesius U, Imin N, Rolfe BG (2007) A proteome study of the proliferation of cultured Medicago truncatula protoplasts. Proteomics 7:722–736

    Article  PubMed  Google Scholar 

  • Eamens A, Wang MB, Smith NA, Waterhouse PM (2008) RNA silencing in plants: yesterday, today, and tomorrow. Plant Physiol 147:456–468

    Article  PubMed  CAS  Google Scholar 

  • Ehrhardt DW, Atkinson EM, Long SR (1992) Depolarization of alfalfa root hair membrane potential by Rhizobium meliloti Nod factors. Science 256:998–1000

    Article  PubMed  CAS  Google Scholar 

  • El Yahyaoui F, Kuster H, Ben Amor B, Hohnjec N, Puhler A, Becker A, Gouzy J, Vernie T, Gough C, Niebel A, Godiard L, Gamas P (2004) Expression profiling in Medicago truncatula identifies more than 750 genes differentially expressed during nodulation, including many potential regulators of the symbiotic program. Plant Physiol 136:3159–3176

    Article  PubMed  CAS  Google Scholar 

  • Gambino G, Perrone I, Gribaudo I (2008) A rapid and effective method for RNA extraction from different tissues of grapevine and other woody plants. Phytochem Anal 19:520–525

    Article  PubMed  CAS  Google Scholar 

  • Garraway SM, Xu Q, Inturrisi CE (2007) Design and evaluation of small interfering RNAs that target expression of the N-methyl-d-aspartate receptor NR1 subunit gene in the spinal cord dorsal horn. J Pharmacol Exp Ther 322:982–988

    Article  PubMed  CAS  Google Scholar 

  • Govindarajulu M, Elmore JM, Fester T, Taylor CG (2008) Evaluation of constitutive viral promoters in transgenic soybean roots and nodules. Mol Plant Microbe Interact 21:1027–1035

    Article  PubMed  CAS  Google Scholar 

  • Gupta S, Schoer RA, Egan JE, Hannon GJ, Mittal V (2004) Inducible, reversible, and stable RNA interference in mammalian cells. Proc Natl Acad Sci USA 101:1927–1932

    Article  PubMed  CAS  Google Scholar 

  • Hannon GJ (2002) RNA interference. Nature 418:244–251

    Article  PubMed  CAS  Google Scholar 

  • Helliwell CA, Waterhouse PM (2005) Constructs and methods for hairpin RNA-mediated gene silencing in plants. Methods Enzymol 392:24–35

    Article  PubMed  CAS  Google Scholar 

  • Ishihara S, Yamamoto Y, Ifuku K, Sato F (2005) Functional analysis of four members of the PsbP family in photosystem II in Nicotiana tabacum using differential RNA interference. Plant Cell Physiol 46:1885–1893

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Karimi M, Depicker A, Hilson P (2007) Recombinational cloning with plant gateway vectors. Plant Physiol 145:1144–1154

    Article  PubMed  CAS  Google Scholar 

  • Kim GB (2009) shRNA-directed silencing of remorin genes by U6 promoter in relation to nodule and arbuscular mycorrhiza formation in Medicago truncatula. Ph.D. thesis, Seoul National University, Seoul, Korea

  • Kim GB, Nam YW (2012) Isolation and characterization of Medicago truncatula U6 promoters for the construction of small hairpin RNA-mediated gene silencing vectors. Plant Mol Biol Rep. doi:10.1007/s11105-012-0528-1

  • Kim GB, Nam YW (2013) A novel Δ1-pyrroline-5-carboxylate synthetase gene of Medicago truncatula plays a predominant role in stress-induced proline accumulation during symbiotic nitrogen fixation. J Plant Physiol 170:291–302

    Google Scholar 

  • Kim J, Somers DE (2010) Rapid assessment of gene function in the circadian clock using artificial microRNA in Arabidopsis mesophyll protoplasts. Plant Physiol 154:611–621

    Article  PubMed  CAS  Google Scholar 

  • Kumar R, Conklin DS, Mittal V (2003) High-throughput selection of effective RNAi probes for gene silencing. Genome Res 13:2333–2340

    Article  PubMed  CAS  Google Scholar 

  • Lefebvre B, Furt F, Hartmann MA, Michaelson LV, Carde JP, Sargueil-Boiron F, Rossignol M, Napier JA, Cullimore J, Bessoule JJ, Mongrand S (2007) Characterization of lipid rafts from Medicago truncatula root plasma membranes: a proteomic study reveals the presence of a raft-associated redox system. Plant Physiol 144:402–418

    Article  PubMed  CAS  Google Scholar 

  • Lefebvre B, Timmers T, Mbengue M, Moreau S, Herve C, Toth K, Bittencourt-Silvestre J, Klaus D, Deslandes L, Godiard L et al (2010) A remorin protein interacts with symbiotic receptors and regulates bacterial infection. Proc Natl Acad Sci USA 107:2343–2348

    Article  PubMed  CAS  Google Scholar 

  • Leong SA, Williams PH, Ditta GS (1985) Analysis of the 5′ regulatory region of the gene for delta-aminolevulinic acid synthetase of Rhizobium meliloti. Nucleic Acids Res 13:5965–5976

    Article  PubMed  CAS  Google Scholar 

  • Limpens E, Ramos J, Franken C, Raz V, Compaan B, Franssen H, Bisseling T, Geurts R (2004) RNA interference in Agrobacterium rhizogenes-transformed roots of Arabidopsis and Medicago truncatula. J Exp Bot 55:983–992

    Article  PubMed  CAS  Google Scholar 

  • Liu YP, von Eije KJ, Schopman NC, Westerink JT, ter Brake O, Haasnoot J, Berkhout B (2009) Combinatorial RNAi against HIV-1 using extended short hairpin RNAs. Mol Ther 17:1712–1723

    Article  PubMed  CAS  Google Scholar 

  • Lu S, Shi R, Tsao CC, Yi X, Li L, Chiang VL (2004) RNA silencing in plants by the expression of siRNA duplexes. Nucleic Acids Res 32:e171

    Article  PubMed  Google Scholar 

  • Martin CS, Wight PA, Dobretsova A, Bronstein I (1996) Dual luminescence-based reporter gene assay for luciferase and β-galactosidase. Biotechniques 21:520–524

    PubMed  CAS  Google Scholar 

  • Matsukura S, Jones PA, Takai D (2003) Establishment of conditional vectors for hairpin siRNA knockdowns. Nucleic Acids Res 31:e77

    Article  PubMed  Google Scholar 

  • Miki D, Itoh R, Shimamoto K (2005) RNA silencing of single and multiple members in a gene family of rice. Plant Physiol 138:1903–1913

    Article  PubMed  CAS  Google Scholar 

  • Molnar A, Bassett A, Thuenemann E, Schwach F, Karkare S, Ossowski S, Weigel D, Baulcombe D (2009) Highly specific gene silencing by artificial microRNAs in the unicellular alga Chlamydomonas reinhardtii. Plant J 58:165–174

    Article  PubMed  CAS  Google Scholar 

  • Myslinski E, Ame JC, Krol A, Carbon P (2001) An unusually compact external promoter for RNA polymerase III transcription of the human H1RNA gene. Nucleic Acids Res 29:2502–2509

    Article  PubMed  CAS  Google Scholar 

  • Niu QW, Lin SS, Reyes JL, Chen KC, Wu HW, Yeh SD, Chua NH (2006) Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol 24:1420–1428

    Article  PubMed  CAS  Google Scholar 

  • Ossowski S, Schwab R, Weigel D (2008) Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J 53:674–690

    Article  PubMed  CAS  Google Scholar 

  • Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS (2002) Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 16:948–958

    Article  PubMed  CAS  Google Scholar 

  • Paddison PJ, Silva JM, Conklin DS, Schlabach M, Li M, Aruleba S, Balija V, O’Shaughnessy A, Gnoj L, Scobie K et al (2004) A resource for large-scale RNA-interference-based screens in mammals. Nature 428:427–431

    Article  PubMed  CAS  Google Scholar 

  • Paul CP, Good PD, Winer I, Engelke DR (2002) Effective expression of small interfering RNA in human cells. Nat Biotechnol 20:505–508

    Article  PubMed  CAS  Google Scholar 

  • Paule MR, White RJ (2000) Survey and summary: transcription by RNA polymerases I and III. Nucleic Acids Res 28:1283–1298

    Article  PubMed  CAS  Google Scholar 

  • Quandt HJ, Pühler A, Broer I (1993) Transgenic root nodules of Vicia hirsuta: A fast and efficient system for the study of gene expression in indeterminate-type nodules. Mol Plant Microbe Interact 6:699–706

    Article  Google Scholar 

  • Raffaele S, Mongrand S, Gamas P, Niebel A, Ott T (2007) Genome-wide annotation of remorins, a plant-specific protein family: evolutionary and functional perspectives. Plant Physiol 145:593–600

    Article  PubMed  CAS  Google Scholar 

  • Reddy R, Henning D, Das G, Harless M, Wright D (1987) The capped U6 small nuclear RNA is transcribed by RNA polymerase III. J Biol Chem 262:75–81

    PubMed  CAS  Google Scholar 

  • Roosens NH, Thu TT, Iskandar HM, Jacobs M (1998) Isolation of the ornithine-delta-aminotransferase cDNA and effect of salt stress on its expression in Arabidopsis thaliana. Plant Physiol 117:263–271

    Article  PubMed  CAS  Google Scholar 

  • Rose RJ, Nolan KE (1995) Regeneration of Medicago truncatula from protoplasts isolated from kanamycin-sensitive and kanamycin-resistant plants. Plant Cell Rep 14:349–353

    Article  CAS  Google Scholar 

  • Samac DA, Tesfaye M, Dornbusch M, Saruul P, Temple SJ (2004) A comparison of constitutive promoters for expression of transgenes in alfalfa (Medicago sativa). Transgenic Res 13:349–361

    Article  PubMed  CAS  Google Scholar 

  • Schirawski J, Planchais S, Haenni AL (2000) An improved protocol for the preparation of protoplasts from an established Arabidopsis thaliana cell suspension culture and infection with RNA of turnip yellow mosaic tymovirus: a simple and reliable method. J Virol Methods 86:85–94

    Article  PubMed  CAS  Google Scholar 

  • Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18:1121–1133

    Article  PubMed  CAS  Google Scholar 

  • Shimomura O (2006) Bioluminescence: Chemical principles and methods. World Scientific, Hakensack

    Book  Google Scholar 

  • Stove V, Smits K, Naessens E, Plum J, Verhasselt B (2006) Multiple gene knock-down by a single lentiviral vector expressing an array of short hairpin RNAs. Electron J Biotechnol 9:572–579

    Article  Google Scholar 

  • Szabados L, Savoure A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  PubMed  CAS  Google Scholar 

  • Tadege M, Wen J, He J, Tu H, Kwak Y, Eschstruth A, Cayrel A, Endre G, Zhao PX, Chabaud M, Ratet P, Mysore KS (2008) Large-scale insertional mutagenesis using the Tnt1 retrotransposon in the model legume Medicago truncatula. Plant J 54:335–347

    Article  PubMed  CAS  Google Scholar 

  • Tannous BA, Kim DE, Fernandez JL, Weissleder R, Breakefield XO (2005) Codon-optimized Gaussia luciferase cDNA for mammalian gene expression in culture and in vivo. Mol Ther 11:435–443

    Article  PubMed  CAS  Google Scholar 

  • Toth K, Stratil TF, Madsen EB, Ye J, Popp C, Antolin-Llovera M, Grossmann C, Jensen ON, Schussler A, Parniske M, Ott T (2012) Functional domain analysis of the remorin protein LjSYMREM1 in Lotus japonicus. PLoS One 7:e30817

    Article  PubMed  CAS  Google Scholar 

  • Vidugiriene J, Yeager T, Almond B, Garvin D, Bulleit B, Storts D (2004) The use of bioluminescent reporter genes for RNAi optimization. Promega Notes 87:2–6

    Google Scholar 

  • Waibel F, Filipowicz W (1990) U6 snRNA genes of Arabidopsis are transcribed by RNA polymerase III but contain the same two upstream promoter elements as RNA polymerase II-transcribed U-snRNA genes. Nucleic Acids Res 18:3451–3458

    Article  PubMed  CAS  Google Scholar 

  • Walhout AJ, Temple GF, Brasch MA, Hartley JL, Lorson MA, van den Heuvel S, Vidal M (2000) GATEWAY recombinational cloning: application to the cloning of large numbers of open reading frames or ORFeomes. Methods Enzymol 328:575–592

    Article  PubMed  CAS  Google Scholar 

  • Wang MB, Helliwell CA, Wu LM, Waterhouse PM, Peacock WJ, Dennis ES (2008) Hairpin RNAs derived from RNA polymerase II and polymerase III promoter-directed transgenes are processed differently in plants. RNA 14:903–913

    Article  PubMed  CAS  Google Scholar 

  • Warthmann N, Chen H, Ossowski S, Weigel D, Herve P (2008) Highly specific gene silencing by artificial miRNAs in rice. PLoS One 3:e1829

    Article  PubMed  Google Scholar 

  • Wassenegger M, Pelissier T (1998) A model for RNA-mediated gene silencing in higher plants. Plant Mol Biol 37:349–362

    Article  PubMed  CAS  Google Scholar 

  • Watson JM, Fusaro AF, Wang M, Waterhouse PM (2005) RNA silencing platforms in plants. FEBS Lett 579:5982–5987

    Article  PubMed  CAS  Google Scholar 

  • Wesley SV, Helliwell CA, Smith NA, Wang MB, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA et al (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27:581–590

    Article  PubMed  CAS  Google Scholar 

  • Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572

    Article  PubMed  CAS  Google Scholar 

  • Yu JY, DeRuiter SL, Turner DL (2002) RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci USA 99:6047–6052

    Article  PubMed  CAS  Google Scholar 

  • Yukawa Y, Felis M, Englert M, Stojanov M, Matousek J, Beier H, Sugiura M (2005) Plant 7SL RNA genes belong to type 4 of RNA polymerase III-dependent genes that are composed of mixed promoters. Plant J 43:97–106

    Article  PubMed  CAS  Google Scholar 

  • Zhai Z, Sooksa-nguan T, Vatamaniuk OK (2009) Establishing RNA interference as a reverse-genetic approach for gene functional analysis in protoplasts. Plant Physiol 149:642–652

    Article  PubMed  CAS  Google Scholar 

  • Zhao QA, Wang HZ, Yin YB, Xu Y, Chen F, Dixon RA (2010) Syringyl lignin biosynthesis is directly regulated by a secondary cell wall master switch. Proc Natl Acad Sci USA 107:14496–14501

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, Santat LA, Chang MS, Liu J, Zavzavadjian JR, Wall EA, Kivork C, Simon MI, Fraser ID (2007) A versatile approach to multiple gene RNA interference using microRNA-based short hairpin RNAs. BMC Mol Biol 8:98

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported in part through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2006-0050138).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Woo Nam.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1.73 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, GB., Bae, JH., An, C.S. et al. Single or Multiple Gene Silencing Directed by U6 Promoter-Based shRNA Vectors Facilitates Efficient Functional Genome Analysis in Medicago truncatula . Plant Mol Biol Rep 31, 963–977 (2013). https://doi.org/10.1007/s11105-013-0562-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-013-0562-7

Keywords

Navigation