Skip to main content
Log in

Synchronous Elicitation of Development in Root Caps Induces Transient Gene Expression Changes Common to Legume and Gymnosperm Species

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Root cap development in cereals and legumes is self-regulated by a repressor that accumulates in the extracellular environment, and immersing the root tip into water results in renewed cap development. By exploiting this phenomenon, root cap mitosis and differentiation can be synchronously induced among populations. In Pisum sativum L., messenger RNA (mRNA) differential display revealed changes in expression of approximately 1% of the sample mRNA population within minutes of induced cap turnover. This profile changes sequentially over a period of 30 min, then stabilizes. Microarray analysis of Medicago truncatula root caps confirmed changes in expression of approximately 1% of the target population, within minutes. A cell specific marker for cap turnover exhibited the same temporal and spatial expression profile in the gymnosperm species Norway spruce (Picea abies) as in pea. Induced cap development provides a means to profile cell-specific gene expression among phylogenetically diverse species from the early moments of mitosis and cellular differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aziz N, Paiva NL, May GD, Dixon RA. Transcriptome analysis of alfalfa glandular trichomes. Planta. 2005;221:28–38.

    Article  PubMed  CAS  Google Scholar 

  • Barlow PW. The root cap. In: Torry JG, Clarkson DT, editors. The development and function of roots. London: Academic; 1975. p. 21–54.

    Google Scholar 

  • Barlow PW. The root cap: cell dynamics, cell differentiation and cap function. J Plant Growth Reg. 2003;21:261–86.

    Article  Google Scholar 

  • Birnbaum K, Shasha DE, Wang JY, et al. A gene expression map of the Arabidopsis root. Science. 2003;302:1956–60.

    Article  PubMed  CAS  Google Scholar 

  • Brigham LA, Woo HH, Wen F, Hawes MC. Meristem-specific suppression of mitosis and a global switch in gene expression in the root cap of pea (Pisum sativum L.) by endogenous signals. Plant Physiol. 1998;118:1223–31.

    Article  PubMed  CAS  Google Scholar 

  • Campilho A, Garcia B, van den Toorn H, et al. Time-lapse analysis of stem-cell divisions in the Arabidopsis thaliana root meristem. Plant J. 2008;48:619–27.

    Article  Google Scholar 

  • Che P, Gingerich DJ, Lall S, Howell SH. Global and hormone-induced gene expression changes during shoot development in Arabidopsis. Plant Cell. 2002;14:2771–85.

    Article  PubMed  CAS  Google Scholar 

  • Christopher DA, Borsics T, Yuen CYL, et al. The cyclic nucleotide gated cation channel AtCNGC10 traffics from the ER via Golgi vesicles to the plasma membrane of Arabidopsis root and leaf cells. BMC Plant Biol. 2007;7:48–53.

    Article  PubMed  Google Scholar 

  • Clark GB, Lee D, Dauwalder M, Roux SJ. Immunolocalization and histochemical evidence for the association of two different Arabidopsis annexins with secretion during early seedling growth and development. Planta. 2005;220:621–31.

    Article  PubMed  CAS  Google Scholar 

  • Cooper S. Rejoinder: whole-culture synchronization cannot, and does not, synchronize cells. Trends Biotechnol 2004. 274–6.

  • Cooper S, Sheddon K. Microarray analysis of gene expression during the cell cycle. Cell Chromosome. 2003;2:1–12.

    Article  PubMed  Google Scholar 

  • Cooper S, Chen KZ, Ravi S. Thymidine block does not synchronize L1210 mouse leukaemic cells: implications for cell cycle control, cell cycle analysis and whole-culture synchronization. Cell Prolif. 2008;41:156–67.

    PubMed  CAS  Google Scholar 

  • Cramer CL, Rider TB, Bell JN, Lamb CJ. Rapid switching of plant gene expression induced by fungal elicitor. Science. 1985;227:1240–3.

    Article  CAS  Google Scholar 

  • Davis PK, Ho A, Dowdy SF. Biological methods for cell cycle synchronization of mammalian cells. Biotechniques. 2001;30:1322–6.

    PubMed  CAS  Google Scholar 

  • Delledonne M, Xia Y, Dixon RA, Lamb C. Nitric oxide functions as a signal in plant disease resistance. Nature. 1998;394:585–8.

    Article  PubMed  CAS  Google Scholar 

  • Dolan L, Janmaat K, Willemsen V, Linstead P, Poethig S, Roberts K, et al. Cellular organisation of the Arabidopsis thaliana root. Development. 1993;119:1–84.

    Google Scholar 

  • Doonan JH. Cycling plant cells. Plant J. 1991;1:129–32.

    Article  Google Scholar 

  • Gunawardena U, Hawes MC. Tissue specific localization of root infection by fungal pathogens: role of root border cells. Mol Plant Microbe Int. 2002;15:1128–36.

    Article  CAS  Google Scholar 

  • Hahn MG. Microbial elicitors and their receptors in plants. Annu Rev Phytopathol. 1996;34:387–412.

    Article  PubMed  CAS  Google Scholar 

  • Hamamoto L, Hawes MC, Rost TL. The production and release of living root cap border cells is a function of root apical meristem type in dicotyledonous angiosperm plants. Ann Bot. 2006;97:917–23.

    Article  PubMed  Google Scholar 

  • Hawes MC, Pueppke SG. Sloughed peripheral root cap cells: yield from different species, and callus formation from single cells. Am J Bot. 1986;73:1466–73.

    Article  Google Scholar 

  • Hawes MC, Brigham LA, Wen F, et al. Function of root border cells in plant health: pioneers in the rhizosphere. Annu Rev Phytopathol. 1998;36:311–27.

    Article  PubMed  CAS  Google Scholar 

  • Hawes MC, Gunawardena U, Miyasaka S, Zhao X. The role of root border cells in plant defense. Trends Plant Sci. 2000;5:128–32.

    Article  PubMed  CAS  Google Scholar 

  • Hawes MC, Bengough GA, Cassab G, Ponce G. Root caps and rhizosphere. J Plant Growth Regul. 2003;21:352–67.

    Article  Google Scholar 

  • Hietala AM, Kvaalen H, Schmidt A, et al. Temporal and spatial profiles of chitinase expression by Norway spruce in response to bark colonization by Heterobasidion annosum. Appl Environ Microbiol. 2004;70:3948–53.

    Article  PubMed  CAS  Google Scholar 

  • Inze D. Cell cycle control and plant development. Oxford, UK: Blackwell; 2007.

    Book  Google Scholar 

  • Jiang K, Feldman LJ. Regulation of root apical meristem development. Annu Rev Cell Dev Biol. 2005;21:485–509.

    Article  PubMed  CAS  Google Scholar 

  • Jiang K, Zhang S, Lee S, et al. Transcription profile analyses identify genes and pathways central to root cap functions in maize. Plant Mol Biol. 2005;60:343–63.

    Article  Google Scholar 

  • Knox OGG, Gupta VVSR, Nehl DB, Stiller WN. Constitutive expression of Cry proteins in roots and border cells of transgenic cotton. Euphytica. 2007;154:83–90.

    Article  CAS  Google Scholar 

  • Koutaniemi S, Warinowski T, Kärkönen A, et al. Expression profiling of the lignin biosynthetic pathway in Norway spruce. Plant Mol Biol. 2007;65:311–28.

    Article  PubMed  CAS  Google Scholar 

  • Küster H, Hohnjec N, Krajinski F, et al. Construction and validation of cDNA-based Mt6k-RIT macro- and microarrays to explore root endosymbioses in the model legume Medicago truncatula. J Biotechnol. 2004;108:95–113.

    Article  PubMed  Google Scholar 

  • Liang P, Pardee AB. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science. 1992;257:967–71.

    Article  PubMed  CAS  Google Scholar 

  • Liang P, Averboukh L, Pardee AB. Method of differential display. Methods Mol Genet. 1994;5:3–16.

    CAS  Google Scholar 

  • Liang P, Zhu W, Zhang X, et al. Differential display using one-base anchored oligo-dT primers. Nucleic Acids Res. 1995;22:5763–4.

    Article  Google Scholar 

  • Lievens S, Goormachtig S, Holters M. A critical evaluation of differential display as a tool to identify genes involved in legume nodulation: looking back and looking forward. Nucleic Acids Res. 2001;29:3459–68.

    Google Scholar 

  • McGowan CH. Regulation of the eucaryotic cell cycle. Prog Cell Cycle Res. 2003;5:1–4.

    PubMed  Google Scholar 

  • McKhann HI, Hirsch AM. Isolation of chalcone synthase and chalcone isomerase cDNAs from alfalfa—highest transcript levels occur in young roots and root tips. Plant Mol Biol. 1994;25:767–74.

    Article  Google Scholar 

  • Menges M, Murray JA. Synchronous Arabidopsis suspension cultures for analysis of cell cycle gene activity. Plant J. 2002;10:203–12.

    Article  Google Scholar 

  • Nicoll SM, Brigham LA, Wen F, Hawes MC. Expression of transferred genes during hairy root development in pea. Plant Cell Tissue Organ Cult. 1995;42:57–66.

    Article  Google Scholar 

  • Pastori GM, Foyer CH. Common components, networks, and pathways of cross-tolerance to stress. The central role of redox and abscisic acid mediated controls. Plant Physiol. 2002;129:460–8.

    Article  PubMed  CAS  Google Scholar 

  • Peterson RL, Scott MG, Kott L. Root cap structure in Isoetes macrospora Dur. Ann Bot. 1979;44:739–44.

    Google Scholar 

  • Ponce G, Barlow PW, Feldman LJ, Cassab GI. Auxin and ethylene interactions control mitotic activity of the quiescent centre, root cap size, and pattern of cap cell differentiation in maize. Plant Cell Environ. 2005;28:719–32.

    Article  PubMed  CAS  Google Scholar 

  • Ponce G, Rasgado FA, Cassab GI. Roles of amyloplasts and water deficit in root tropisms. Plant Cell Environ. 2008;31:205–17.

    PubMed  CAS  Google Scholar 

  • Ramirez-Parra E, Desvoyes B, Butierrez C. Balance between cell division and differentiation during plant development. Int J Dev Biol. 2005;49:467–77.

    Article  PubMed  Google Scholar 

  • Shepard KA, Purugganan MD. The genetics of plant morphological evolution. Curr Opinion Plant Biol. 2005;5:49–55.

    Article  Google Scholar 

  • Shishkova S, Dubrovsky JG. Developmental programmed cell death in primary roots of Sonoran desert cactaceae. Am J Bot. 2005;92:1590–4.

    Article  Google Scholar 

  • Wang H, Li J, Bostock RM, Gilchrist DG. Apoptosis: a functional paradigm for programmed plant cell death induced by a host-selective phytotoxin and invoked during development. Plant Cell. 1996;8:375–91.

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Wang L, Mao Y, et al. Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis. Plant Cell. 2005;17:2204–16.

    Article  PubMed  CAS  Google Scholar 

  • Wellmer F, Riechmann JL. Gene network analysis in plant development by genomic technologies. Int J Dev Biol. 2005;49:745–59.

    Article  PubMed  CAS  Google Scholar 

  • Wen F, Zhu Y, Brigham LA, Hawes MC. Expression of an inducible pectinmethylesterase gene is required for border cell separation from roots of pea. Plant Cell. 1999;11:1129–40.

    Article  PubMed  CAS  Google Scholar 

  • Wen F, Woo HH, Hirsch AM, Hawes MC. Lethality of inducible, meristem localized ectopic expression of b-glucuronidase in plants. Plant Mol Biol Rep. 2004;22:7–14.

    Article  CAS  Google Scholar 

  • Wen F, Celoy R, Price I, et al. Isolation and characterization of a rhizosphere galactosidase from Pisum sativum L. Plant Soil. 2007;304:28–34.

    Google Scholar 

  • Wen F, Celoy R, Nguyen T, et al. Inducible expression of Pisum sativum xyloglucan fucosyltransferase (PsFut1) in the pea root cap meristem, and effects of antisense mRNA expression on root cap cell wall structural integrity. Plant Cell Rep. 2008;27:1225–35.

    Article  Google Scholar 

  • Woo HH, Hawes MC. Cloning of genes whose expression is correlated with mitosis and localized in dividing cells in root caps of pea. Plant Mol Biol. 1997;35:1045–51.

    Article  PubMed  CAS  Google Scholar 

  • Woo HH, Orbach MJ, Hirsch AM, Hawes MC. Meristem localized inducible expression of a UDP-glycosyltransferase gene is essential for growth and development. Plant Cell. 1999;11:1–14.

    Article  Google Scholar 

  • Woo HH, Faull K, Hirsch AM, Hawes MC. Altered life cycle in Arabidopsis plants expressing a UDP-glucuronosyltransferase from Pisum sativum L. Plant Physiol. 2003;133:538–48.

    Article  PubMed  CAS  Google Scholar 

  • Woo HH, Jeong BR, Hirsch AM, Hawes MC. Characterization of Arabidopsis AtUGT85A and AtGUS gene families and their expression in rapidly dividing tissues. Genomics. 2007;90:143–53.

    Article  PubMed  CAS  Google Scholar 

  • Young L, Harrison BR, Murthy N, et al. Adenosine kinase modulates root gravitropism and cap morphogenesis in Arabidopsis. Plant Physiol. 2006;142:564–73.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by funding from the Department of Energy, grant no. DE-FG02-04ER15551, and the University of Arizona College of Agriculture and Life Sciences.

We thank Dr. David Galbraith, University of Arizona, for printing of microarrays, and Dr. F.C. Gang for assistance with bioinformatics analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martha C. Hawes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, F., Woo, H.H., Pierson, E.A. et al. Synchronous Elicitation of Development in Root Caps Induces Transient Gene Expression Changes Common to Legume and Gymnosperm Species. Plant Mol Biol Rep 27, 58–68 (2009). https://doi.org/10.1007/s11105-008-0058-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-008-0058-z

Keywords

Navigation