Skip to main content
Log in

Effects of Epichloë endophytes on litter decomposition--depending on different host species

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Grass fungal endophyte symbioses are widespread in the Qinghai-Tibetan Plateau grasslands. The symbioses with fungal endophytes would likely have an important role in affecting ecosystem functioning (e.g., carbon and nutrients cycling, and primary productivity) It is necessary to understand the role of fungal endophytes in the litter decomposition as well as the nutrient transition of ecosystem in which endophyte host species are abundant.

Methods

Taking Festuca sinensis, Stipa purpurea and Achnatherum inebrians as study objects, litterbag method was used to compare the litter decomposition of these species with / without endophyte (E+ and E-). The changes in litter weight, total nitrogen, lignin and cellulose contents and their residual rate during the decomposition process were estimated in this study. The microbial biomass carbon and nitrogen of soil under litters were also compared.

Results

The litter from E+ F. sinensis and S. purpurea decomposed more quickly along with the cellulose compared with E-. The contents and residual rates of nitrogen and lignin in the F. sinensis and S. purpurea litters had no apparent trend of change. The microbial biomass nitrogen of soil under the E+ F. sinensis and S. purpurea litters was higher than that of the E- litters. Alternatively, the rates of decomposition and degradation of lignin were lower in the E+ A. inebrians litter than those of the E- litter. The endophyte decreased the microbial biomass carbon of soil under A. inebrians litter.

Conclusions

Endophytes will affect litter decomposition of host plants. Different grass-endophyte symbioses had different decomposition rates. Our results will enhance the knowledge of the role of endophytes in ecological progress of grassland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aber JD, Melillo JM, McClaugherty CA (1990) Predicting long-term patterns of mass loss, nitrogen dynamics, and soil organic matter formation from initial fine litter chemistry in temperate forest ecosystems. Can J Bot 68:2201–2208

    Article  Google Scholar 

  • Aerts R (1997) Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439–449

  • Anderson J (1991) The effects of climate change on decomposition processes in grassland and coniferous forests. Ecol Appl 1:326–347

    Article  CAS  PubMed  Google Scholar 

  • Austin AT, Vivanco L, González-Arzac A, Pérez LI (2014) There’s no place like home? An exploration of the mechanisms behind plant litter–decomposer affinity in terrestrial ecosystems. New Phytol 204:307–314

    Article  Google Scholar 

  • Baaru M, Mungendi D, Bationo A, Verchot L, Waceke W (2007) Soil microbial biomass carbon and nitrogen as influenced by organic and inorganic inputs at Kabete, Kenya. Advances in integrated soil fertility management in sub-Saharan Africa: challenges and opportunities. Springer, Berlin

  • Bao GS, Li CJ (2016) Isolation and identification of endophytes infecting Stipa purpurea, a dominant grass in meadows of the Qinghai-Tibet Plateau. Acta Prataculturae Sin 25:32–42

    Google Scholar 

  • Bao GS, Song ML, Wang YQ, Saikkonen K, Li CJ (2020) Does Epichloë endophyte enhance host tolerance to root hemiparasite? Microb Ecol 82:35–48

  • Berg B, Berg M, Bottner P, Box E, Breymeyer A, De Anta RC, Couteaux M, Escudero A, Gallardo A, Kratz W (1993) Litter mass loss rates in pine forests of Europe and Eastern United States: some relationships with climate and litter quality. Biogeochemistry 20:127–159

    Article  Google Scholar 

  • Bernard E, Gwinn K, Pless C, Williver C (1997) Soil invertebrate species diversity and abundance in endophyte-infected tall fescue pastures. Neotyphodium/grass interactions. Springer, Berlin

  • Bradford MA, Veen GC, Bonis A, Bradford EM, Classen AT, Cornelissen JHC, Crowther TW, Jonathan R, Freschet GT, Kardol P (2017) A test of the hierarchical model of litter decomposition. Nat Ecol Evol 1:1836–1845

    Article  PubMed  Google Scholar 

  • Brookes P (1995) The use of microbial parameters in monitoring soil pollution by heavy metals. Biol Fertil Soils 19:269–279

    Article  CAS  Google Scholar 

  • Casas C, Omacini M, Montecchia MS, Correa OS (2011) Soil microbial community responses to the fungal endophyte Neotyphodium in Italian ryegrass. Plant Soil 340:347–355

    Article  CAS  Google Scholar 

  • Chen L, Li XZ, Li CJ, Swoboda GA, Young CA, Sugawara K, Leuchtmann A, Schardl CL (2015) Two distinct Epichloë species symbiotic with Achnatherum inebrians, drunken horse grass. Mycologia 107:863–873

    Article  CAS  PubMed  Google Scholar 

  • Chen TX, Li CJ, White JF, Nan ZB (2019) Effect of the fungal endophyte Epichloë bromicola on polyamines in wild barley (Hordeum brevisubulatum) under salt stress. Plant Soil 436:29–48

    Article  CAS  Google Scholar 

  • Chomel M, Guittonny-Larchevêque M, Fernandez C, Gallet C, DesRochers A, Pare D, Jackson BG, Baldy V (2016) Plant secondary metabolites: a key driver of litter decomposition and soil nutrient cycling. J Ecol 104:1527–1541

    Article  Google Scholar 

  • Chuan XZ, Carlyle CN, Bork EW, Chang SX, Hewins DB (2018) Long-term grazing accelerated litter decomposition in northern temperate grasslands. Ecosystems 21:1321–1334

    Article  Google Scholar 

  • Clay K (1997) Consequences of endophyte-infected grasses on plant biodiversity. Neotyphodium/grass interactions. Springer, Berlin

  • Clay K, Holah J (1999) Fungal endophyte symbiosis and plant diversity in successional fields. Science 285:1742–1744

    Article  CAS  PubMed  Google Scholar 

  • Couteaux M-M, Bottner P, Berg B (1995) Litter decomposition, climate and liter quality. Trends Ecol Evol 10:63–66

    Article  CAS  PubMed  Google Scholar 

  • Dong SK, Sherman R (2015) Enhancing the resilience of coupled human and natural systems of alpine rangelands on the Qinghai-Tibetan Plateau. Rangel J 37:i–iii

    Article  Google Scholar 

  • Dowson C, Rayner A, Boddy L (1988) Inoculation of mycelial cord-forming basidiomycetes into woodland soil and litter II. Resource capture and persistence. New Phytol 109:343–349

    Article  Google Scholar 

  • Fierer N, Craine JM, McLauchlan K, Schimel JP (2005) Litter quality and the temperature sensitivity of decomposition. Ecology 86:320–326

    Article  Google Scholar 

  • Franzluebbers A, Nazih N, Stuedemann J, Fuhrmann J, Schomberg H, Hartel P (1999) Soil carbon and nitrogen pools under low-and high-endophyte-infected tall fescue. Soil Sci Soc Am J 63:1687–1694

    Article  CAS  Google Scholar 

  • Fukasawa Y, Osono T, Takeda H (2009) Effects of attack of saprobic fungi on twig litter decomposition by endophytic fungi. Ecol Res 24:1067

    Article  Google Scholar 

  • Gallardo A, Merino J (1993) Leaf decomposition in two Mediterranean ecosystems of southwest Spain: influence of substrate quality. Ecology 74:152–161

    Article  Google Scholar 

  • Gundel PE, Helander M, Garibaldi LA, Vázquez-de-Aldana BR, Zabalgogeazcoa I, Saikkonen K (2016) Role of foliar fungal endophytes in litter decomposition among species and population origins. Fungal Ecol 21:50–56

    Article  Google Scholar 

  • Gundel PE, Helander M, Garibaldi LA, Vázquez-de-Aldana B, Zabalgogeazcoa I, Saikkonen K (2017) Direct and indirect effects of the fungal endophyte Epichloë uncinatum on litter decomposition of the host grass, Schedonorus pratensis. Plant Ecol 218:1107–1115

    Article  Google Scholar 

  • Hope G (2014) The sensitivity of the high mountain ecosystems of New Guinea to climatic change and anthropogenic impact. Arct Antarct Alp Res 46:777–786

    Article  Google Scholar 

  • Horwath W, Paul E (1994) Microbial biomass. Methods of Soil Analysis: Part 2 Microbiological and Biochemical Properties 5, 753-773

  • Jonasson S, Havström M, Jensen M, Callaghan TV (1993) In situ mineralization of nitrogen and phosphorus of arctic soils after perturbations simulating climate change. Oecologia 95:179–186

    Article  PubMed  Google Scholar 

  • Kuldau G, Bacon C (2008) Clavicipitaceous endophytes: their ability to enhance resistance of grasses to multiple stresses. Biol Control 46:57–71

    Article  Google Scholar 

  • Latch GC (1993) Physiological interactions of endophytic fungi and their hosts. Biotic stress tolerance imparted to grasses by endophytes. Agric, Ecosyst Environ 44:143–156

    Article  Google Scholar 

  • Lemons A, Clay K, Rudgers JA (2005) Connecting plant-microbial interactions above and belowground: a fungal endophyte affects decomposition. Oecologia 145:595–604

    Article  PubMed  Google Scholar 

  • Leuchtmann A, Schardl CL, White JF, Tadych M (2014) Nomenclatural realignment of Neotyphodium species with genus Epichloë. Mycologia 106:202–215

    Article  CAS  PubMed  Google Scholar 

  • Li CJ, Nan ZB, Paul VH, Dapprich PD, Liu Y (2004a) A new Neotyphodium species symbiotic with drunken horse grass (Achnatherum inebrians) in China. Mycotaxon 90:141–147

    Google Scholar 

  • Li SQ, Ren SJ, Li SX (2004b) Seasonal change of soil microbial biomass and the relationship between soil microbial biomass and soil moisture and temperature. Plant Nutr Fertil Sci 10:18–23

    Google Scholar 

  • Li CJ, Gao JH, Nan ZB (2007) Interactions of Neotyphodium gansuense, Achnatherum inebrians, and plant-pathogenic fungi. Mycol Res 111:1220–1227

    Article  PubMed  Google Scholar 

  • Li W, Wang JL, Zhang XL, Shi SL, Cao WX (2018) Effect of degradation and rebuilding of artificial grasslands on soil respiration and carbon and nitrogen pools on an alpine meadow of the Qinghai-Tibetan Plateau. Ecol Eng 111:134–142

    Article  CAS  Google Scholar 

  • Lyons PC, Evans JJ, Bacon CW (1990) Effects of the fungal endophyte Acremonium coenophialum on nitrogen accumulation and metabolism in tall fescue. Plant Physiol 92:726–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma BB, Sun J (2018) Predicting the distribution of Stipa purpurea across the Tibetan Plateau via the MaxEnt model. BMC Ecol 18:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Malinowski DP, Alloush GA, Belesky DP (1998) Evidence for chemical changes on the root surface of tall fescue in response to infection with the fungal endophyte Neotyphodium coenophialum. Plant Soil 205:1–12

    Article  CAS  Google Scholar 

  • Malinowski D, Belesky D, Fedders J (1999) Endophyte infection may affect the competitive ability of tall fescue grown with red clover. J Agron Crop Sci 183:91–101

    Article  Google Scholar 

  • Meentemeyer V (1978) Macroclimate and lignin control of litter decomposition rates. Ecology 59:465–472

    Article  CAS  Google Scholar 

  • Mikola J, Helander M, Saikkonen K (2016) No effects of Epichloë endophyte infection on nitrogen cycling in meadow fescue (Schedonorus pratensis) grassland. Plant Soil 405:257–264

    Article  CAS  Google Scholar 

  • Monnet F, Vaillant N, Hitmi A, Coudret A, Sallanon H (2001) Endophytic Neotyphodium lolii induced tolerance to Zn stress in Lolium perenne. Physiol Plant 113:557–563

    Article  CAS  Google Scholar 

  • Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:322–331

  • Omacini M, Chaneton EJ, Ghersa CM, Otero P (2004) Do foliar endophytes affect grass litter decomposition? A microcosm approach using Lolium multiflorum. Oikos 104:581–590

    Article  Google Scholar 

  • Omacini M, Semmartin M, Pérez LI, Gundel PE (2012) Grass-endophyte symbiosis: a neglected aboveground interaction with multiple belowground consequences. Appl Soil Ecol 61:273–279

    Article  Google Scholar 

  • Osono T (2006) Role of endophytic fungi in grass litter decomposition. NZGA: Res Pract Ser 13:103–105

    Google Scholar 

  • Petroski RJ, Dornbos DL Jr, Powell RG (1990) Germination and growth inhibition of annual ryegrass (Lolium multiflorum L.) and alfalfa (Medicago sativa L.) by loline alkaloids and synthetic N-acylloline derivatives. J Agric Food Chem 38:1716–1718

    Article  CAS  Google Scholar 

  • Ponce MA, Bompadre MJ, Scervino JM, Ocampo JA, Chaneton EJ, Godeas AM (2009) Flavonoids, benzoic acids and cinnamic acids isolated from shoots and roots of Italian rye grass (Lolium multiflorum Lam.) with and without endophyte association and arbuscular mycorrhizal fungus. Biochem Syst Ecol 37:245–253

    Article  CAS  Google Scholar 

  • Porre RJ, van der Werf W, De Deyn GB, Stomph TJ, Hoffland E (2020) Is litter decomposition enhanced in species mixtures? A meta-analysis. Soil Biol Biochem :107791

  • Purahong W, Hyde KD (2011) Effects of fungal endophytes on grass and non-grass litter decomposition rates. Fungal Divers 47:1–7

    Article  Google Scholar 

  • Rasmussen S, Parsons AJ, Bassett S, Christensen MJ, Hume DE, Johnson LJ, Johnson RD, Simpson WR, Stacke C, Voisey CR (2007) High nitrogen supply and carbohydrate content reduce fungal endophyte and alkaloid concentration in Lolium perenne. New Phytol 173:787–797

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen S, Parsons AJ, Fraser K, Xue H, Newman JA (2008) Metabolic profiles of Lolium perenne are differentially affected by nitrogen supply, carbohydrate content, and fungal endophyte infection. Plant Physiol 146:1440–1453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L, Beckwith F, Kim Y-O, Redman RS (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2:404–416

    Article  PubMed  Google Scholar 

  • Rogers JK, Morton BC, Mosali J (2011) Plant and endophyte effect on fiber, N, and P concentrations in tall fescue. Int J Agron 2011:7

  • Rowland AP, Roberts JD (1994) Lignin and cellulose fractionation in decomposition studies using acid-detergent fibre methods. Commun Soil Sci Plant Anal 25:269–277

    Article  CAS  Google Scholar 

  • Saikkonen K, Ahlholm J, Helander M, Lehtimäki S, Niemeläinen O (2000) Endophytic fungi in wild and cultivated grasses in Finland. Ecography 23:360–366

    Article  Google Scholar 

  • Schardl CL, Leuchtmann A, Spiering MJ (2004) Symbioses of grasses with seedborne fungal endophytes. Annu Rev Plant Biol 55:315–340

    Article  CAS  PubMed  Google Scholar 

  • Schmidt SP, Hoveland CS, Clark EM, Davis ND, Smith LA, Grimes HW, Holliman JL (1982) Association of an endophytic fungus with fescue toxicity in steers fed Kentucky 31 tall fescue seed or hay. J Anim Sci 55:1259–1263

    Article  CAS  PubMed  Google Scholar 

  • Schmidt IK, Jonasson S, Shaver GR, Michelsen A, Nordin A (2002) Mineralization and distribution of nutrients in plants and microbes in four tundra ecosystems-responses to warming. Plant Soil 242:93–106

    Article  CAS  Google Scholar 

  • Schomberg HH, Stuedemann JA, Franzluebbers AJ, Wilkinson SR (2000) Spatial distribution of extractable phosphorus, potassium, and magnesium as influenced by fertilizer and tall fescue endophyte status. Agron J 92:981–986

    Article  CAS  Google Scholar 

  • Siegel MR, Latch GCM, Johnson MC (1987) Fungal endophytes of grasses. Annu Rev Phytopathol 25:293–315

    Article  Google Scholar 

  • Siegel MR, Latch GCM, Bush LP, Fannin FF, Rowan DD, Tapper BA, Bacon CW, Johnson MC (1990) Fungal endophyte-infected grasses: alkaloid accumulation and aphid response. J Chem Ecol 16:3301–3315

    Article  CAS  PubMed  Google Scholar 

  • Siegrist JA, McCulley RL, Bush LP, Phillips TD (2010) Alkaloids may not be responsible for endophyte-associated reductions in tall fescue decomposition rates. Funct Ecol 24:460–468

    Article  Google Scholar 

  • Song ML, Chai Q, Li XZ, Yao X, Li CJ, Christensen MJ, Nan ZB (2015a) An asexual Epichloë endophyte modifies the nutrient stoichiometry of wild barley (Hordeum brevisubulatum) under salt stress. Plant Soil 387:153–165

    Article  CAS  Google Scholar 

  • Song ML, Li XZ, Saikkonen K, Li CJ, Nan ZB (2015b) An asexual Epichloë endophyte enhances waterlogging tolerance of Hordeum brevisubulatum. Fungal Ecol 13:44–52

    Article  Google Scholar 

  • Soto-Barajas MC, Zabalgogeazcoa I, Gómez-Fuertes J, González-Blanco V, Vázquez-de-Aldana BR (2016) Epichloë endophytes affect the nutrient and fiber content of Lolium perenne regardless of plant genotype. Plant Soil 405:265–277

    Article  CAS  Google Scholar 

  • Tang R, DeLuca TH, Cai Y, Sun S, Luo J (2021) Long-term decomposition dynamics of broadleaf litters across a climatic gradient on the Qinghai-Tibetan Plateau, China. Plant Soil 465:403–414

  • Tian P, Xu WB, Li CJ, Song H, Wang MN, Schardl CL, Nan ZB (2020) Phylogenetic relationship and taxonomy of a hybrid Epichloë species symbiotic with Festuca sinensis. Mycol Prog 19:1069–1081

    Article  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707

    Article  CAS  Google Scholar 

  • Wang P, Lassoie JP, Morreale SJ, Dong S (2015) A critical review of socioeconomic and natural factors in ecological degradation on the Qinghai-Tibetan Plateau, China. Rangeland J 37:1–9

    Article  Google Scholar 

  • Wang JJ, Zhou YP, Lin WH, Li MM, Wang MN, Wang ZG, Kuang Y, Tian P (2017) Effect of an Epichloë endophyte on adaptability to water stress in Festuca sinensis. Fungal Ecol 30:39–47

    Article  Google Scholar 

  • White JF, Breen JP, Morgan-Jones G (1991) Substrate utilization in selected Acremonium, Atkinsonella and Balansia species. Mycologia 83:601-610

  • Xu GP, Chao ZG, Wang SP, Hu YG, Zhang ZH, Duan JC, Chang XF, Su AL, Luo CY, Li YN, Du MY (2010) Temperature sensitivity of nutrient release from dung along elevation gradient on the Qinghai-Tibetan plateau. Nutr Cycl Agroecosyst 87:49–57

    Article  Google Scholar 

  • Yao X, Christensen MJ, Bao GS, Zhang CP, Li XZ, Li CJ, Nan ZB (2015) A toxic endophyte-infected grass helps reverse degradation and loss of biodiversity of over-grazed grasslands in northwest China. Sci Rep 5:18527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zabalgogeazcoa I, Gundel PE, Helander M, Saikkonen K (2013) Non-systemic fungal endophytes in Festuca rubra plants infected by Epichloë festucae in subarctic habitats. Fungal Divers 60:25–32

    Article  Google Scholar 

  • Zhang XX, Li CJ, Nan ZB (2010) Effects of cadmium stress on growth and anti-oxidative systems in Achnatherum inebrians symbiotic with Neotyphodium gansuense. J Hazard Mater 175:703–709

    Article  CAS  PubMed  Google Scholar 

  • Zhang XL, Wang SJ, Zhang JM, Wang G, Tang XY (2015) Temporal and spatial variability in precipitation trends in the Southeast Tibetan Plateau during 1961–2012. Clim Past Discuss 11:447–487

    Google Scholar 

  • Zhou GY, Guan LL, Wei XH, Tang XL, Liu SG, Liu JX, Zhang DQ, Yan JH (2008) Factors influencing leaf litter decomposition: an intersite decomposition experiment across China. Plant Soil 311:61–72

    Article  CAS  Google Scholar 

  • Zhou LY, Li CJ, Zhang XX, Johnson R, Bao GS, Yao X, Chai Q (2015) Effects of cold shocked Epichloë infected Festuca sinensis on ergot alkaloid accumulation. Fungal Ecol 14:99–104

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (31700098, 32060398), the Natural Science Foundation of Qinghai Province (2019-ZJ-967Q) and Qinghai Provincial Key Laboratory of Forage Germplasm utilization on Qinghai-Tibetan Plateau (2020-ZJ-Y03). The authors would like to thank Liu Yan, Yin Yali, and Zhao Wen for their help with the collection and analysis of samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meiling Song.

Additional information

Responsible Editor: Birgit Mitter.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, M., Wang, Y., Wang, H. et al. Effects of Epichloë endophytes on litter decomposition--depending on different host species. Plant Soil 471, 715–728 (2022). https://doi.org/10.1007/s11104-021-05235-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-021-05235-x

Keywords

Navigation