Skip to main content

Advertisement

Log in

Edaphic filters as abiotic drivers of Myrtaceae assemblages in subtropical Araucaria Forest

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract (edaphic filters drive Myrtaceae assemblages)

Aims

This study investigated whether soil chemistry act as abiotic drivers of Myrtaceae assemblages, and also investigated the occurrence of indicator species.

Methods

We first characterize the edaphic conditions of forest fragments occupied by Myrtaceae assemblages in Subtropical Araucaria Forest. Then, we investigated the association between soil chemistry and the structure of the assemblages. Finally, we verified which Myrtaceae species are chemical-edaphic bioindicators.

Results

We measured 2357 individuals belonging to 26 species from the Myrtaceae family. The Myrtaceae assemblages were predominantly composed by populations with aggregate spatial distribution pattern. This spatial behavior reflects their edaphic requirements because the soil conditions are heterogeneous even on a small scale, forming chemical-edaphic niche patches. Ecological dominance occurred in habitats characterized by restrictive environmental factors such as soils with high acidity and high availability of exchangeable aluminum. Acca sellowiana and Campomanesia xanthocarpa are indicator species of fertile soils, while Myrceugenia regnelliana is acid and low fertility soils indicative.

Conclusions

In this study we show that soil acidity is an effective driver of Myrtaceae assemblages in Subtropical Araucaria Forest and the use of Myrtaceae indicators can enable policymakers and environmental inspectors to more easily enact conservation in Brazilian ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

All relevant data are within this article and its supporting information files.

References

  • Ali A, Lin S-L, He J-K, Kong F-M, Yu J-H, Jiang H-S (2019) Climate and soils determine aboveground biomass indirectly via species diversity and stand structural complexity in tropical forests. For Ecol Manage 432:823–831. https://doi.org/10.1016/j.foreco.2018.10.024

    Article  Google Scholar 

  • Alleoni LRF, Cambri MA, Caires EF, Garbuio FJ (2010) Acidity and aluminum speciation as affected by surface liming in tropical no-till soils. Soil Sci Soc Am J 74:1010–1017

    CAS  Google Scholar 

  • Almeida FFM (1956) O Planalto basáltico da Bacia do Paraná. Boletim Paulista de Geografia 24:3–34

    Google Scholar 

  • Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2014) Köppen’s climate classification map for Brazil. Meteorol zeit 22:711–728. https://doi.org/10.1127/0941-2948/2013/0507

    Article  Google Scholar 

  • Andersen KM, Turner BL, Dalling JW (2010) Soil-based habitat partitioning in understorey palms in lower montane tropical forests. J Biogeogr 37:278–292. https://doi.org/10.1111/j.1365-2699.2009.02192.x

    Article  Google Scholar 

  • Baldeck CA, Harms KE, Yavitt JB, John R, Turner BL, Valencia R, Navarrete H, Bunyavejchewin S, Kiratiprayoon S, Yaacob A, Supardi MNN, Davies SJ, Hubbell SP, Chuyong GB, Kenfack D, Thomas DW, Dalling JW (2013a) Habitat filtering across tree life stages in tropical forest communities. Proc R Soc B 20130548:280

    Google Scholar 

  • Baldeck CA, Harms KE, Yavitt JB, John R, Turner BL, Valencia R, Navarrete H, Davies SJ, Chuyong GB, Kenfack D, Thomas DW, Madawala S, Gunatilleke N, Gunatilleke S, Bunyavejchewin S, Kiratiprayoon S, Yaacob A, Supardi MNN, Dalling JW (2013b) Soil resources and topography shape local tree community structure in tropical forests. Proc R Soc B 280:20122532. https://doi.org/10.1098/rspb.2012.2532

    Article  PubMed  Google Scholar 

  • Brancalion PHS, Holl KD (2016) Functional composition trajectory: a resolution to the debate between Suganuma, Durigan, and Reid. Restor Ecol 24:1–3

    Google Scholar 

  • Bronick CJ, Lal R (2005) Soil structure and management: A review. Geoderma. Amsterdam 124:3–22. https://doi.org/10.1016/j.geoderma.2004.03.005

    Article  CAS  Google Scholar 

  • Brown C, Burslem DFRP, Illian JB, Bao L, Brockelman W, Cao M, Chang LW, Dattaraja HS, Davies S, Gunatilleke CVS, Gunatilleke IAUN, Huang J, Kassim AR, LaFrankie JV, Lian J, Lin L, Ma K, Mi X, Nathalang A, Noo S, Ong P, Sukumar R, Su SH, Sun IF, Suresh HS, Tan S, Thompson J, Uriarte M, Valencia R, Yap SL, Ye W, Law R (2013) Multispecies coexistence of trees in tropical forests: spatial signals of topographic niche differentiation increase with environmental heterogeneity. Proc R Soc B 280:20130502. https://doi.org/10.1098/RSPB.2013.0502

    Article  CAS  PubMed  Google Scholar 

  • Bruelheide et al (2018) Global trait–environment relationships of plant communities. Nat Ecol Evol 2:1906–1917. https://doi.org/10.1038/s41559-018-0699-8

    Article  PubMed  Google Scholar 

  • Bruijnzeel LA (2001) Hydrology of tropical montane cloud forests: a reassessment. Land Use Water Resource Res 1:1.1–1.18

    Google Scholar 

  • Castanho ADA, Coe MT, Costa MH, Malhi Y, Galbraith D, Quesada CA (2013) Improving simulated Amazon forest biomass and productivity by including spatial variation in biophysical parameters. Biogeosciences 10:2255–2272. https://doi.org/10.5194/bg-10-2255-2013

    Article  Google Scholar 

  • Cattell B (1966) The scree test for the number of factors. Multiv Behav Res 1:245–276

    CAS  Google Scholar 

  • Chambers JM, Cleveland WS, Kleiner B, Tukey PA (1983) "comparing data distributions." in graphical methods for data analysis, vol 62. Wadsworth international group, Belmont ISBN 0-87150-413-8 international ISBN 0-534-98052-X

    Google Scholar 

  • Clark DB, Clark DA, Read JM (1998) Edaphic variation and the mesoscale distribution of tree species in a neotropical rain forest. J Ecol 86:101–112

    Google Scholar 

  • Clark D, Clark D, Read JM (1999) Edaphic factors and the landscape-scale distribution of rain forest trees. Ecology 80:2662–2675

    Google Scholar 

  • Condit R, Engelbrecht BMJ, Pino D, Pérez R, Turner BL (2013) Species distributions in response to individual soil nutrients and seasonal drought across a community of tropical trees. Proc Natl Acad Sci U S A 110:5064–5068

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cornwell WK, Schwilk DW, Ackerly DD (2006) A trait-based test for habitat filtering: convex hull volume. Ecology 87:1465–1471

    PubMed  Google Scholar 

  • CPRM - SERVIÇO GEOLÓGICO DO BRASIL (2014) Mapa geológico do estado de Santa Catarina. Porto Alegre: CPRMEscala 1:500.000

    Google Scholar 

  • CQFS-RS/SC (Comissão de química e fertilidade do Solo) (2016) Manual de Calagem e Adubação para os estados do Rio Grande do Sul e de Santa Catarina. 11. ed. Frederico Westphalen: SBCS-NRS, pp. 376

  • Day KJ, John EA, Hutchings MJ (2003) The effects of spatially heterogeneous nutrient supply on yield, intensity of competition and root placement patterns in Briza media and Festuca ovina. Funct Ecol 17:454–463. https://doi.org/10.1046/j.1365-2435.2003.00758.x

    Article  Google Scholar 

  • Ducroquet JPHJ, Hickel E, Nodari RO (2000) Goiaba Serrana (Feijoa sellowiana) Jaboticabal: FUNEP, pp. 66

  • Dufrene M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366. https://doi.org/10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2

    Article  Google Scholar 

  • EMBRAPA (2004) Solos do Estado de Santa Catarina. EMBRAPA Solos, Rio de Janeiro, p 726

    Google Scholar 

  • EMBRAPA (2013) Sistema brasileiro de classificação de solos, 3rd edn. EMBRAPA Solos, Brasília, p 353

    Google Scholar 

  • EMBRAPA (2018) Sistema brasileiro de classificação de solos, 5th edn. EMBRAPA Solos, Brasília, p 590

    Google Scholar 

  • Figueiredo FOG, Zuquim G, Tuomisto H, Moulatlet GM, Balslev H, Costa FRC (2018) Beyond climate control on species range: the importance of soil data to predict distribution of Amazonian plant species. J Biogeogr 45:190–200. https://doi.org/10.1111/jbi.13104

    Article  Google Scholar 

  • Flora do Brasil (2020) Flora do Brasil 2020 em construção: Algas, Fungos e Plantas. http://floradobrasil.jbrj.gov.br/reflora/listaBrasil (accessed 13 Jun 2019)

  • Fransen B, Kroon HD, Berendse F (2001) Soil nutrient heterogeneity alters competition between two perennial grass species. Ecology 82:2534–2546

    Google Scholar 

  • García-Hernández MÁ, Toledo-Aceves T, López-Barrera F, Sosa VJ, Paz H (2019) Effects of environmental filters on early establishment of cloud forest trees along elevation gradients: Implications for assisted migration. Forest Ecol Manag 432:427–435. https://doi.org/10.1016/j.foreco.2018.09.042

    Article  Google Scholar 

  • Gasper AL, Sevegnani L, Vibrans AC, Sobral M, Uhlman A, Lingner DV, Rigon-Jr MJ, Verdi M, Stival-Santos A, Dreveck S, Korte A (2013) Inventário florístico florestal de Santa Catarina: espécies da Floresta Ombrófila Mista. Rodriguésia 64:201–210

    Google Scholar 

  • Gatiboni LC, Vargas CO, Albuquerque JA, Almeida JA, Stahl J, Chaves DM, Brunetto G, Dall’Orsoletta DJ, Rauber LP (2017) Phosphorus fractions in soil after successive crops of Pinus taeda L. without fertilization. Ciência Rural 47:e20160595. https://doi.org/10.1590/0103-8478cr20160595

    Article  Google Scholar 

  • Gomes JP, Dacoregio HM, Montibeller-Silva K, Rosa LH, Bortoluzzi RLC (2017) Myrtaceae na Bacia do Rio Caveiras: Características Ecológicas e Usos Não Madeireiros. Floresta e Ambient 24:1–10. https://doi.org/10.1590/2179-8087.011115

    Article  Google Scholar 

  • Gomes JP, Stedille LIB, Milani JEF, Montibeller-Silva K, Mantovani A, Bortoluzzi RLC (2020) Beta diversity as an indicator of priority areas for Myrtaceae assemblage conservation in subtropical Araucaria Forest. Biodivers Conserv 29:1361–1379. https://doi.org/10.1007/s10531-020-01940-8

    Article  Google Scholar 

  • Gower JC (1966) Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53:325–338. https://doi.org/10.1093/biomet/53.3-4.325

    Article  Google Scholar 

  • Graham MH (2003) Confronting multicollinearity in ecological multiple regression. Ecology 84:2809–2815

    Google Scholar 

  • Harms KE, Condit R, Hubbell SP, Foster RB (2001) Habitat associations of trees and shrubs in a 50 ha neotropical forest plot. J Ecol 89:947–959

    Google Scholar 

  • Harrison SP, Rajakaruna N (2011) Serpentine: the evolution and ecology of a model system. University of California Press, Berkeley

    Google Scholar 

  • Hay JD, Bizerril MX, Calouro AM, Costa EMN, Ferreira AMA, Maria LA, Gastal MLA, Goes CD Jr, Manzan DJ, Martins CR, Monteiro JMG, Oliveira SA, Rodrigues MCM, Seyffarth JAS, Walter BMT (2000) Comparação do padrão da distribuição espacial em escalas diferentes de espécies nativas do cerrado, em Brasília. DF. Revista Brasileira de Botânica 23:341–347. https://doi.org/10.1590/S0100-84042000000300008

    Article  Google Scholar 

  • Higuchi P, Silva AC, Ferreira TS, Souza ST, Gomes JP, Montibeller-Silva K et al (2012) Influência de variáveis ambientais sobre o padrão estrutural e florístico do componente arbóreo, em um fragmento de Floresta Ombrófila Mista Montana em Lages, SC. Ciência Florestal 22:79–90

    Google Scholar 

  • Higuchi P, Silva AC, Almeida JA, Bortoluzzi RLC, Mantovani A, Ferreira TS, Souza ST, Gomes JP, Montibeller-Silva K (2013) Florística e estrutura do componente arbóreo e análise ambiental de um fragmento de Floresta Ombrófila Mista Alto-Montana no município de Painel. SC. Ciência Florestal 23:153–164. https://doi.org/10.5902/198050988449

    Article  Google Scholar 

  • Holt RD, Keitt TH, Lewis MA, Maurer BA, Taper ML (2005) Theoretical models of species’ borders: single species approaches. Oikos 108:18–27

    Google Scholar 

  • Hubbell SP, Foster RB (1990) The fate of juvenile trees in a Neotropical Forest: implications for the natural maintenance of tropical tree diversity. In: Bawa KS, Hadley M (eds) Reproductive Ecology of Tropical Forest Plants. Main and the Biosphere Series. The Parthenon Publishing Group. UNESCO, Paris

    Google Scholar 

  • Humboldt AV, Bonpland A (1805) Essai sur la geographie des plantes. Levrault, Schoell et Compagnie, Paris, p 155

    Google Scholar 

  • Hutchinson GE (1957) Concluding remarks. Cold Spring Harb Symp Quant Biol 22:415–427

    Google Scholar 

  • IBGE – (Brazilian Institute of Geography and Statistics) (2012) Manual Técnico da Vegetação Brasileira. 2ªed revisada e ampliada. pp. 271

  • Jager MM, Richardson SJ, Bellingham PJ, Clearwater MJ, Laughlin DC (2015) Soil fertility induces coordinated responses of multiple independent functional traits. J Ecol 103:374–385. https://doi.org/10.1111/1365-2745.12366

    Article  Google Scholar 

  • Jiang Y, Zang R, Letcher SG, Ding Y, Huang Y, Lu X, Huang J, Liu W, Zhang Z (2016) Associations between plant composition/diversity and the abiotic environment across six vegetation types in a biodiversity hotspot of Hainan Island, China. Plant Soil 403:21–35. https://doi.org/10.1007/s11104-015-2723-y

    Article  CAS  Google Scholar 

  • John R, Dalling JW, Harms KE, Yavitt JB, Stallard RF, Mirabello M, Hubbell SP, Valencia R, Navarrete H, Vallejo M, Foster RB (2007) Soil nutrients influence spatial distributions of tropical tree species. Proc Natl Acad Sci USA 104:864–869. https://doi.org/10.1073/pnas.0604666104

    Article  CAS  PubMed  Google Scholar 

  • Jolliffe I (2002) Principal component analysis. Springer, New York

    Google Scholar 

  • Jordano P, Galetti M, Pizo MA, Silva WR (2006) Ligando Frugivoria e Dispersão de sementes à biologia da conservação. In: Duarte CF et al (eds) Biologia da conservação: essências. Rima, São Paulo, p 41

    Google Scholar 

  • Kassambara A (2018) Ggpubr: 'ggplot2' based publication ready plots. R package version 0.2. Disponivel em <https://CRAN.R-project.org/package=ggpubr>

  • Kassambara A, Mundt F (2017) factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R package version 1.0.5. Disponível em <https://CRAN.Rproject.org/package=factoextra>

  • Katabuchi M, Kurokawa H, Davies SJ, Tan S, Nakashizuka T (2012) Soil resource availability shapes community trait structure in a species rich dipterocarp forest. J Ecol 100:643–651. https://doi.org/10.1111/j.1365-2745.2011.01937.x

    Article  Google Scholar 

  • Kersten RA, Galvão F (2011) Suficiência amostral em inventários florísticos e fitossociológicos. In: Felfili JM, Eisenlohr PV, MMRF M, Andrade LA, JAA MN (eds) Fitossociologia no Brasil. UFV, Viçosa, p 558

    Google Scholar 

  • Kindt R (2015) Community ecology and suitability analysis. R package version 2.5-4: package: BiodiversityR. R development Core Team. R: a language and environment for statistical computing. R Foundation for statistical computing, versão 3.2.2

  • Kraft NJB, Adler PB, Godoy O, James EC, Fuller S, Levine JM (2015) Community assembly, coexistence and the environmental filtering metaphor. Funct Ecol 29:592–599. https://doi.org/10.1111/1365-2435.12345

    Article  Google Scholar 

  • Lara-Romero C, Robledo-Arnuncio JJ, García-Fernandez A, Iriondo JM (2014) Assessing intraspecific variation in effective dispersal along an elevation gradient: a test in two Mediterranean high-mountain plants. PLoS One 9:e87189

    PubMed  PubMed Central  Google Scholar 

  • Lara-Romero C, de la Cruz M, Escribano-Ávila G, García-Fernández A, Iriondo JM (2016) What causes conspecific plant aggregation? Disentangling the role of dispersal, habitat heterogeneity and plant–plant interactions. Oikos 125:1304–1313. https://doi.org/10.1111/oik.03099

    Article  Google Scholar 

  • Laurance WF (2009) Conserving the hottest of the hotspots. Biol Conserv 142:1137. https://doi.org/10.1016/j.biocon.2008.10.011

    Article  Google Scholar 

  • Legendre P, Fortin M (1989) Spatial pattern and ecological analysis. Vegetatio 80:107–138

    Google Scholar 

  • Legrand CD, Klein RM (1969a) Mirtáceas – Eugenia. In: REITZ R (ed) Flora Ilustrada Catarinense. Herbário Barbosa Rodrigues, Itajaí, pp 45–217

    Google Scholar 

  • Legrand CD, Klein RM (1969b) Mirtáceas – Myrcia. In: REITZ R (ed) Flora Ilustrada Catarinense. Herbário Barbosa Rodrigues, Itajaí, pp 218–330

    Google Scholar 

  • Legrand CD, Klein RM (1977) Mirtáceas: Campomanesia, Feijoa, Britoa, Myrrhinium, Hexachlamys, Siphoneugena, Myrcianthes, Neomitranthes, Psidium. In: Reitz R Flora Ilustrada Catarinense. Herbário Barbosa Rodriques, Itajaí, pp 571–730

    Google Scholar 

  • Lomolino MV, Riddle BR, Whittaker RJ (2017) Biogeography: biological diversity across space and time, 5th edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Lucas EJ, Bünger MO (2015) Myrtaceae in the Atlantic forest: their role as a ‘model’ group. Biodivers Conserv 24:2165–2180. https://doi.org/10.1007/s10531-015-0992-7

    Article  Google Scholar 

  • Ludwig JA, Reynolds JF (1988) Statistical ecology: a primer on methods and computing. John Wiley & Sons, New York, p 368

    Google Scholar 

  • Machado FB, Nardy AJR, Junior R, Viana ER, Marques LS, Oliveira MAFD (2009) Geologia e litogeoquímica da Formação Serra Geral nos estados de Mato grosso e Mato Grosso do Sul. Geociências:523–540

  • Magurran AE (2003) Measuring biological diversity. Blackwell Publishing, Oxford, p 256

    Google Scholar 

  • Maydeu-Olivares A, García-Forero C (2010) Goodness of fit testing. In: Peterson P, Baker E, McGaw B (eds) International encyclopedia of education, 3ed. Elsevier, Oxford

    Google Scholar 

  • McGarigal K, Cushman SA, Stafford SG (2000) Multivariate statistics for wildlife and ecology research. Springer-Verlag, New York, p 283

    Google Scholar 

  • McGeoch MA, Van Rensburg BJ, Botes A (2002) The verification and application of bioindicators: a case study of dung beetles in a savanna ecosystem. J Appl Ecol 39:661–672

  • McGill BJ, Etienne RS, Gray JS, Alonso D, Anderson MJ, Benecha HK, Dornelas M, Enquist BJ, Green JL, He F, Hurlbert AH, Magurran AE, Marquet PA, Maurer BA, Ostling A, Soykan CU, Ugland KI, White EP (2007) Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecol Lett 10:995–1015. https://doi.org/10.1111/j.1461-0248.2007.01094.x

    Article  PubMed  Google Scholar 

  • Mendes MS, Latawiec AE, Sansevero JBB, Crouzeilles R, Moraes LFD, Castro A, Alves-Pinto HN, Brancalion PHS, Rodrigues RR, Chazdon RL, Barros FSM, Santos J, Iribarrem A, Mata S, Lemgruber L, Rodrigues A, Korys K, BBN S (2018) Look down- there is a gap-the need to include soil data in Atlantic Forest restoration. Restauration Ecology 27:361–370. https://doi.org/10.1111/rec.12875

    Article  Google Scholar 

  • Mendoza JG, Herraiz CS (2010) De la biogeografía al paisaje en Humboldt: Pisos de Pegetación y Paisajes Andinos Equinocciales. Población y Sociedad 17:29–58

    Google Scholar 

  • Monteiro CAF (1963) Geomorfologia. In: Cataldo, D.M. (Ed.), Geografi a do Brasil e Grande Região Sul. IBGE, Tomo I. RJ, pp. 15–79

  • Mueller-Dombois D, Ellenberg H (1974) Aims and methods of vegetation ecology. John Wiley, New York, p 547

    Google Scholar 

  • Murray-Smith C, Neil A, Brummitt NA, Oliveira-Filho AT, Bachman S, Moat J, Lughadha EMN, Lucas EJ (2008) Plant diversity hotspots in the Atlantic coastal forests of Brazil. Conserv Biol 23:151–163. https://doi.org/10.1111/j.1523-1739.2008.01075.x

    Article  PubMed  Google Scholar 

  • Naimi B (2014) Usdm: uncertainty analysis for species distribution models. R Package Vers 1:1–15

    Google Scholar 

  • Nardy AJR, Machado FB, Oliveira MAF (2008) As rochas vulcânicas mesozoicas acidas da Bacia do Paraná: litoestratigrafia e considerações geoquímico estratigráficas. Geociências 38:178–195

    Google Scholar 

  • Negiz MG, Eser Y, Kuzugüdenll E, Izkan K (2015) Indicator species of essential forest tree species in the Burdur district. J Environ Biol 36:107–111

    PubMed  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens HH, Wagner H (2018) Vegan: community ecology package. R package version 1: 8-8. Disponível em https://cran.r-project.org/web/packages/vegan/index.html (accessed 30 Oct 2018)

  • Paoli GD, Curran LM, Zak DR (2006) Soil nutrients and beta diversity in the Bornean Dipterocarpaceae: evidence for niche partitioning by tropical rain forest trees. J Ecol 94:157–170. https://doi.org/10.1111/j.1365-2745.2005.01077.x

    Article  CAS  Google Scholar 

  • Peña-Claros M, Poorter L, Alarcon A, Blate G, Choque U, Fredericksen TS, Justiniano MJ, Leano C, Licona JC, Pariona W, Putz FE, Quevedo L, Toledo M (2012) Soil effects on forest structure and diversity in a moist and a dry tropical forest. Biotropica 44:276–283

    Google Scholar 

  • Pillar VD, Duarte LS, Sosinski EE, Joner F (2009) Discriminating trait-convergence and trait-divergence assembly patterns in ecological community gradients. J Veg Sci 20:334–348. https://doi.org/10.1111/j.1654-1103.2009.05666.x

    Article  Google Scholar 

  • Pinho BX, Melo FPL, Arroyo-Rodríguez V, Lohbeck SPM, Tabarelli M (2017) Soil-mediated filtering organizes tree assemblages in regenerating tropical forests. J Ecol 106:137–147. https://doi.org/10.1111/1365-2745.12843

    Article  CAS  Google Scholar 

  • Potts MD, Ashton PS, Kaufman LK, Plotkin JB (2002) Habitat patterns in tropical rain forests: a comparison of 105 plots in Northwest Borneo. Ecology 83:2782–2797

    Google Scholar 

  • Poulsen AD, Tuomisto H, Balslev H (2006) Edaphic and floristic variation within a 1-ha plot of lowland Amazonian rain Forest. Biotropica 38:468–478. https://doi.org/10.1111/j.1744-7429.2006.00168.x

    Article  Google Scholar 

  • R Core Team 2018: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Disponível em < https://www.R-project.org/.>

  • Roberts DW (2012) Labdsv: ordination and multivariate analysis for ecology. R Package Version 1:4–1 http://CRAN.R-project.org/package=labdsv (accessed 15 Nov 2018)

    Google Scholar 

  • Santos EA, Medeiros MB, Ferreira EJL, Simon MF, OliveiraWL CFRC (2020) Palm distribution patterns in the southwestern Brazilian Amazon: impact of a large hydroelectric dam. For Ecol Manag 463:118032. https://doi.org/10.1016/j.foreco.2020.118032

    Article  Google Scholar 

  • Scheer MB, Ribas CG, Vellozo RC (2011) Funcionalidades ambientais de solos altomontanos na Serra da Igreja, Paraná. Revista Brasileira de Ciência do Solo 35:1013–1026. https://doi.org/10.1590/S0100-06832011000400005

    Article  Google Scholar 

  • Schenk HJ, Jackson RB (2002) The global biogeography of roots. Ecol Monogr 72:311–328. https://doi.org/10.1890/0012-9615(2002)072[0311:TGBOR]2.0.CO;2

    Article  Google Scholar 

  • Sellan G, Thompson J, Majalap N, Brearley FQ (2019) Soil characteristics influence species composition and forest structure differentially among tree size classes in a Bornean heath forest. Plant Soil 438:173–185. https://doi.org/10.1007/s11104-019-04000-5

    Article  CAS  Google Scholar 

  • Silva AC, Higuchi P, Aguiar MD, Negrini M, Fert Neto J, Hess AF (2012) Relações Florísticas e Fitossociologia de uma Floresta Ombrófila Mista Montana secundária em Lages, Santa Catarina. Ciência Florestal 22:193–206

    CAS  Google Scholar 

  • Skorupa ALA, Guilherme LRG, Curi N, Silva CPC, Scolforo JRS, Marques JJGSM (2012) Propriedades de solos sob vegetação nativa em Minas Gerais: distribuição por fitofisionomia, hidrografia e variabilidade espacial. Rev Bras de Ciência do Solo 36:11–22

    Google Scholar 

  • Sollins P (1998) Factors influencing species composition in tropical lowland rain forest: does soil matter? Ecology 79:23–30. https://doi.org/10.1890/0012-9658(1998)079[0023:FISCIT]2.0.CO;2

    Article  Google Scholar 

  • Stachowicz JJ (2012) Niche expansion by positive interactions: realizing the fundamentals. A comment on Rodriguez-cabal et al. Ideas Ecol Evol 5:42–43. https://doi.org/10.4033/iee.2012.5.10.c

    Article  Google Scholar 

  • Swaine MD (1996) Rainfall and soil fertility as factors limiting Forest species distributions in Ghana. Ecology 84:419–428

    Google Scholar 

  • Thompson K, Hodgson JG, Gaston KJ (1998) Abundance-range size relationships in the herbaceous flora of Central England. J Ecol 86:439–448

    Google Scholar 

  • Tuomisto H (1998) What satellite imagery and large-scale field studies can tell about biodiversity patterns in Amazonian forests. Ann Missouri Bot Gard 85(48):62

    Google Scholar 

  • Tuomisto H (2006) Edaphic niche differentiation among Polybotrya ferns in western Amazonia: implications for coexistence and speciation. Ecography 29(273):284

    Google Scholar 

  • Tuomisto H, Poulsen AD (1996) Influence of edaphic specialization on pteridophyte distribution in neotropical rain forests. J Biogeogr 23(283):293

    Google Scholar 

  • Tuomisto H, Ruokolainen K, Aguilar M, Sarmiento A (2003) Floristic patterns along a 43-km long transect in an Amazonian rain forest. J Ecol 91:743–756

    Google Scholar 

  • Valentin J (2012) Ecologia Numérica: Uma Introdução à Análise Multivariada de Dados Ecológicos. Interciência, Rio de Janeiro, p 154

    Google Scholar 

  • Weil RR, Brady NC (2016) The nature and properties of soils. Prentice–Hall, Upper Saddle River, p 965

    Google Scholar 

  • Yamada E, Hiwada T, Inaba T, Tokukura M, Fuse Y (2002) Speciation of aluminum in soil extracts using cation and anion exchangers followed by a fl ow-injection system with fl uorescence detection using lumogallion. Anal Sci 18:785–791

    CAS  PubMed  Google Scholar 

  • Yang X, Yan C, Zhao Q, Holyoak M, Fortuna MA, Bascompte J, Jansen PA, Zhang Z (2018) Ecological succession drives the structural change of seed-rodent interaction networks in fragmented forests. Forest Ecol Manag 419–420:42–50. https://doi.org/10.1016/j.foreco.2018.03.023

    Article  Google Scholar 

  • Zhang J, Cheng K, Zang R, Ding Y (2014) Environmental filtering of species with different functional traits into plant assemblages across a tropical coniferous-broadleaved forest ecotone. Plant Soil 380:361–374. https://doi.org/10.1007/s11104-014-2088-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Santa Catarina State University and the Maintenance Support Fund and the Development of Higher Education in Santa Catarina for graduate scholarships to J.P.G. and K.M.S., the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for graduate scholarships to L.I.B.S. and N.C.F.C., and the Fundação de Amparo à Pesquisa e Inovação de Santa Catarina (FAPESC). We also give thanks to Dra. Ana Carolina da Silva, Dr.. Pedro Higuchi, Dr.. Alvaro Luiz Mafra and Dr.. Jean Carlos Budke for their contributions and suggestions to improve this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design of the study: JPG. Acquisition of data for the study: JPG and LIBS. Analysis of data for the work: JPG and LIBS. Interpretation of data for the work and manuscript writing: JPG, LIBS, KMS, NCFC, JEFM, LCG, AM and RLCB. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Juliano Pereira Gomes.

Additional information

Responsible Editor: Amandine Erktan.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 28 kb)

ESM 2

(DOCX 364 kb)

ESM 3

(DOCX 248 kb)

ESM 4

(DOCX 101 kb)

ESM 5

(DOCX 133 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomes, J.P., Stedille, L.I.B., Milani, J.E. et al. Edaphic filters as abiotic drivers of Myrtaceae assemblages in subtropical Araucaria Forest. Plant Soil 454, 187–206 (2020). https://doi.org/10.1007/s11104-020-04645-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-020-04645-7

Keywords

Navigation