Skip to main content
Log in

Mucilage from fruits/seeds of chia (Salvia hispanica L.) improves soil aggregate stability

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Myxodiaspores have been shown to enhance soil-seed contact and improve soil stability. We aim to demonstrate the effect of myxodiaspory on the stability of soil aggregates and gain insight on the nature of bonds.

Methods

Mucilage extracted from chia (Salvia hispanica L.) fruits after hydration was mixed with three soils (sandy-loam, loam, clay loam), incubated and tested at different times up to 30 days. We measured aggerate stability by wet sieving and the dynamics of soil CO2 evolution. SEM imaging and 13CPMAS spectroscopy of mucilage were performed in order to infer mechanisms of soil stabilization.

Results

The incorporation of mucilage resulted in a dose- and soil-dependent rise in aggregate stability. The dose of 2% mucilage overcame textural effects on soil aggregate stability by providing a 2.3-fold stability increase in the loam and clay-loam and a 4.9-fold increase in the sandy-loam compared to control. The effect persisted after 30 days in spite of C losses due to soil respiration. Mechanisms of soil bonding analogous to xanthan can be inferred from SEM imaging and 13C–CPMAS, since the mucilage was identified as a biopolymer containing 93.39% carbohydrates and 22.02% uronic acids.

Conclusions

We demonstrate that mucilage extruded by hydrated diaspores strongly increases soil aggregate stability. This represents a potentially important ecosystem service provided by myxodiasporous crops during germination. Our findings confirm potential applications of mucilage from myxodiaspores as natural soil stabilizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abiven S, Menasseri S, Angers DA, Leterme P (2007) Dynamics of aggregate stability and biological binding agents during decomposition of organic materials. Eur J Soil Sci 58(1):239–247

  • Ahmed MA, Kroener E, Holz M, Zarebanadkouki M, Carminati A (2014) Mucilage exudation facilitates root water uptake in dry soils. Funct Plant Biol 41:1129–1137

    Article  Google Scholar 

  • Albalasmeh AA, Ghezzehei TA (2014) Interplay between soil drying and root exudation in rhizosheath development. Plant Soil 374:739–751

    Article  CAS  Google Scholar 

  • Alpizar-Reyes E, Carrillo-Navas H, Gallardo-Rivera R, Varela-Guerrero V, Alvarez-Ramirez J, Pérez-Alonso C (2017) Functional properties and physicochemical characteristics of tamarind (Tamarindus indica L.) seed mucilage powder as a novel hydrocolloid. J Food Eng 209:68–75

    Article  CAS  Google Scholar 

  • Amellal N, Burtin G, Bartoli F, Heulin T (1998) Colonization of wheat roots by an exopolysaccharide-producing Pantoea agglomerans strain and its effect on rhizosphere soil aggregation. Appl Environ Microbiol 64:3740–3747

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amézketa E (1999) Soil aggregate stability: a review. J Sustain Agric 14(2–3):83–151

    Article  Google Scholar 

  • Ayeldeen MK, Negm AM, El Sawwaf MA (2016) Evaluating the physical characteristics of biopolymer/soil mixtures. Arab J Geosci 9(5):371–312

    Article  Google Scholar 

  • Bochicchio R, Philips TD, Lovelli S, Labella R, Galgano F, Di Marsico A, Perniola M, Amato M (2015) Innovative crop productions for healthy food: the case of chia (Salvia hispanica L.) In: Vastola A (ed) The sustainability of agro-food and natural resource systems in the Mediterranean Basin. Springer, Cham, pp 29–45

  • Bonanomi G, Incerti G, Barile E, Capodilupo M, Antignani V, Mingo A, Lanzotti V, Scala F, Mazzoleni S (2011) Phytotoxicity, not nitrogen immobilization, explains plant litter inhibitory effects: evidence from solid-state 13C NMR spectroscopy. New Phytol 191:1018–1030

    Article  CAS  PubMed  Google Scholar 

  • Bonanomi G, Incerti G, Ceserano G, Gaglione SA, Lanzotti V (2015) Cigarette butt decomposition and associated chemical changes assessed by 13C CPMAS NMR. PLoS One 10:1–16

    CAS  Google Scholar 

  • Capitani MI, Ixtaina VY, Nolasco SM, Tomás MC (2013) Microstructure, chemical composition and mucilage exudation of chia (Salvia hispanica L.) nutlets from Argentina. J Sci Food Agric 93(15):3856–3862

    Article  CAS  PubMed  Google Scholar 

  • Capitani MI, Corzo-Rios LJ, Chel-Guerrero LA, Betancur-Ancona DA, Nolasco SM (2015) Rheological properties of acqueous dispersions of Chia (Salvia hispanica L.) mucilage. J Food Eng 149:70–77

    Article  Google Scholar 

  • Carminati A, Vetterlein D (2013) Plasticity of rhizosphere hydraulic properties as a key for efficient utilization of scarce resources. Ann Bot 112:277–290

    Article  CAS  PubMed  Google Scholar 

  • Chang I, Im J, Prasidhi AK, Cho GC (2015) Effects of Xanthan gum biopolymer on soil strengthening. Constr Build Mater 74:65–72

    Article  Google Scholar 

  • Chenu C (1993) Clay- or sand- polysaccharides associations as models for the interface between microorganisms and soil: water-related properties and microstructure. Geoderma 56:143–156

    Article  CAS  Google Scholar 

  • Chenu C (1995) Extracellular polysaccharides: an interface between microorganisms and soil constituents. In: Environmental impact of soil component interactions (eds) PM Huang, J Berthelin, JM Bollag, WB McGill, AG page. CRC Press, Boca Raton, pp 217–233

    Google Scholar 

  • Chenu C, Guèrif J (1991) Mechanical strength of clay minerals as influenced by an adsorbed polysaccharide. Soil Sci Soc Am J 55:1076–1080

    Article  CAS  Google Scholar 

  • Cheshire MV (1979) Nature and origins of carbon in soils. Academic Press, London

    Google Scholar 

  • Czarnes S, Hallett PD, Bengough AG, Young IM (2000) Root and microbial-derived mucilages affect soil structure and water transport. Eur J Soil Sci 51:435–443

    Article  Google Scholar 

  • De la Paz Salgado-Cruz M, Calderon-Domınguez G, Chanona-Perez J, Farrera-Rebollo Reynold R, Mendez-Mendez JV, Dıaz-Ramırez M (2013) Chia (Salvia hispanica L.) seed mucilage release characterisation. A microstructural and image analysis study. Ind Crop Prod 51:453–462

    Article  Google Scholar 

  • Deng W, Jeng DS, Toorop PE, Squire GR, Iannetta PP (2012) A mathematical model of mucilage expansion in myxospermous seeds of Capsella bursa-pastoris (shepherd's purse). Ann Bot 109(2):419–427

    Article  CAS  PubMed  Google Scholar 

  • Deng W, Hallett PD, Jeng DS, Squire GR, Toorop PE, Iannetta PPM (2015) The effect of natural seed coatings of Capsella bursa-pastoris L. Medik. (shepherd's purse) on soil-water retention, stability and hydraulic conductivity. Plant Soil 387(1–2):167–176

    Article  CAS  Google Scholar 

  • De-Paula OC, Marzinek J, Oliveira DM, Paiva EA (2015) Roles of mucilage in Emilia fosbergii, a myxocarpic Asteraceae: efficient seed imbibition and diaspore adhesion. American J Botany 102(9):1413–1421

    Article  CAS  Google Scholar 

  • Engelbrecht M, Bochet E, Garcìa Fayos P (2014) Mucilage secretion: an adaptive mechanism to reduce seed removal by soil erosion? Biol J Linnean Soc 111:241–251

    Article  Google Scholar 

  • Gardiner D, Felker P, Carr T (1999) Cactus extract increases water infiltration rates in two soils. Commun Soil Sci Plan 30(11–12):707–1712

    Google Scholar 

  • Gessa C, Deiana S (1992) Ca-polygalacturonate as a model for a soil-root interface. Plant Soil 140(1):1–13

    Article  CAS  Google Scholar 

  • Guckert A, Breisch H, Reisenger O (1975) Interface sol-racine-I Etude au microscope èlectronique des relations mucigel-argile-microorganismes. Soil Biol Biochem 7:241–250

    Article  Google Scholar 

  • Kroener E, Zarebanadkouki M, Kaestner A, Carminati A (2014) Non-equilibrium water dynamics in the rhizosphere: how mucilage affects water flow in soils. Water Resour Res 50(8):6479–6495

    Article  Google Scholar 

  • Lee SS, Gantzer CJ, Thompson AL, Anderson SH (2010) Polyacrylamide and gypsum amendments for erosion and runoff control on two soil series. J Soil Water Conserv 65(4):233–242

    Article  Google Scholar 

  • Lin KY, Daniel JR, Whistler RL (1994) Structure of chia seed polysaccharide exudate. Carbohydr Polym 23:13–18

    Article  CAS  Google Scholar 

  • Makouate HF, Van Rooyen MW, van der Merwe CF (2012) Anatomy of myxospermic diaspores of selected species in the Succulent Karoo, Namaqualand, South Africa. Bothalia 42(1):7–13

    Article  Google Scholar 

  • Menga V, Amato M, Phillips TD, Angelino D, Morreale F, Fares C (2017) Gluten-free pasta incorporating chia (Salvia hispanica L) As thickening agent: an approach to naturally improve the nutritional profile and the in vitro carbohydrate digestibility. Food Chem 221:1954–1961

    Article  CAS  PubMed  Google Scholar 

  • Morel JL, Andreux F, Habib L, Guckert A (1987) Comparison of the adsorption of maize root mucilage and polygalacturonic acid on montmorillonite homoionic to divalent lead and cadmium. Biol Fertil Soils 5:13–17

    Article  CAS  Google Scholar 

  • Morel JL, Habib L, Plantureux S, Guckert A (1991) Influence of maize root mucilage on soil aggregate stability. Plant Soil 136:111–119

    Article  Google Scholar 

  • Muñoz LA, Cobos A, Diaz O, Aguilera JM (2012) Chia seeds: microstructure, mucilage extraction and hydration. J Food Eng 108:216–224

    Article  Google Scholar 

  • Rillig MC, Aguilar Triguers CA, Bergmann J, Verkbruggen E, Veresoglou SD, Lehman A (2015) Plant root and mycorrhizal fungal traits for understanding soil aggregation. New Phytol 205(4):1385–1388

    Article  CAS  PubMed  Google Scholar 

  • Robards AW (1978) An introduction to techniques for scanning electron microscopy of plant cells. In: Hall JL (ed) Electron microscopy and cytochemistry of plant cells. Elsevier, New York, pp 343–403

    Google Scholar 

  • Sáenz C, Sepúlveda E, Matsuhiro B (2004) Opuntia spp mucilage's: a functional component with industrial perspectives. J Arid Environ 57(3):275–290

    Article  Google Scholar 

  • Segura-Campos M, Acosta-Chi Z, Rosado-Rubio G, Chel-Guerrero L, Betancur-Ancona D (2014) Whole and crushed nutlets of chia (Salvia hispanica) from Mexico as a source of functional gums. Food Sci Tech 34(4):701–709

    Article  Google Scholar 

  • Sojka RE, Bjorneberg DL, Entry JA, Lentz RD, Orts WJ (2006) Polyacrylamide in agriculture and environmental land management. Adv Agron 92:75–162

    Article  Google Scholar 

  • Svec I, Hruskova M, Jurinova I (2016) Pasting characteristics of wheat-chia blends. J Food Eng 172:25–30

    Article  CAS  Google Scholar 

  • Tisdall JM, Oades JM (1982) Organic matter and water-stable aggregates in soils. J Soil Sci 33:141–163

    Article  CAS  Google Scholar 

  • Tisdall JM, Cockroft B, Uren NC (1978) The stability of soil aggregate sas affected by organic materials, microbial activity and physical distruption. Australian J Soil Res 16:9–17

    Article  CAS  Google Scholar 

  • Traorè O, Groleau-Renaud G, Plantureux S, Tubeileh A, Boeuf-Tremblay V (2000) Effect of root mucilage and modelled root exudates on soil structure. Eur J Soil Sci 51:575–581

    Article  Google Scholar 

  • Van Rooyen MW, Theron GK, Grobbelaar N (1990) Life form and dispersal spectra of the flora of amaqualand, South Africa. J Arid Environ 9:133–145

    Google Scholar 

  • Watt M, McCully ME, Jeffree CE (1993) Plant and bacterial mucilages of the maize rhizosphere: comparison of their soil binding properties and histochemistry in a model system. Plant Soil 151:151–165

    Article  CAS  Google Scholar 

  • Watt M, McCully ME, Canny MJ (1994) Formation and stabilization of Rhizosheaths of Zea mays L. (effect of soil water content). Plant Physiol 106:179–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Western T (2012) The sticky tale of seed coat mucilages: production, genetics, and role in seed germination and dispersal. Seed Sci Res 22(1):1–25

    Article  CAS  Google Scholar 

  • Yang X, Baskin JM, Baskin CC, Huang Z (2012) More than just a coating: ecological importance, taxonomic occurrence and phylogenetic relationships of seed coat mucilage. Perspect Plant Ecol Evol Syst 14:434–442

    Article  Google Scholar 

Download references

Acknowledgments

This research was carried out in the framework of the Project ‘SMART Basilicata’ (Contract n. 6386-3, 20 July 2016), which was approved by the Italian Ministry of Education, University and Research - MIUR (PON04A200165) and was funded with the Cohesion Fund 2007–2013 of the Basilicata Regional Authority. We gratefully acknowledge Prof. Caterina di Maio for providing the clay-loam soil samples, Masserie Saraceno for access to the loam soil samples and Dr. Alaa Aldin Alromeed for assistance in the setup of mucilage extraction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana Amato.

Additional information

Responsible Editor: W Richard Whalley.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Marsico, A., Scrano, L., Labella, R. et al. Mucilage from fruits/seeds of chia (Salvia hispanica L.) improves soil aggregate stability. Plant Soil 425, 57–69 (2018). https://doi.org/10.1007/s11104-018-3565-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-018-3565-1

Keywords

Navigation