Skip to main content

Advertisement

Log in

The dual benefit of arbuscular mycorrhizal fungi under soil zinc deficiency and toxicity: linking plant physiology and gene expression

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Colonisation of roots by arbuscular mycorrhizal fungi (AMF) can increase plant biomass and nutrition under soil zinc (Zn) deficiency and toxicity conditions, but the genes and transporters involved in these processes are unknown. The aim here was to determine whether there is a ZIP (Zrt-, Irt-like protein) transporter gene that is differentially-regulated by mycorrhizal colonisation that may be involved in mycorrhizal Zn uptake.

Methods

We grew Medicago truncatula plants at soil Zn concentrations ranging from deficient to toxic, with and without inoculation of the AMF Rhizophagus irregularis, and measured plant dry weight, shoot nutrient concentrations and the expression of phosphate, aquaporin and ZIP genes in the roots.

Results

At low and high soil Zn concentrations, there were positive biomass responses to AMF colonisation. Furthermore, at low soil Zn concentrations, MtZIP6 was highly up-regulated in the mycorrhizal plants. With increasing soil Zn concentration, expression of the AMF-induced phosphate transporter gene MtPT4 increased, and mycorrhizal colonisation was maintained.

Conclusions

We have identified two different mechanisms by which AMF colonisation can increase plant biomass under low and high Zn stress: first, up-regulation of MtZIP6 at low soil Zn to supplement Zn uptake from the rhizosphere; and second, persistence of mycorrhizal colonisation and expression of MtPT4, which at high Zn could promote increased plant biomass and reduced tissue Zn concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

Download references

Acknowledgements

SJWW wishes to acknowledge support from the University of Adelaide Ramsay Fellowship. SJWW and SDT acknowledge support from the Australian Research Council Centre of Excellence in Plant Energy Biology (Grant number: CE140100008). We thank Prof. Mike McLaughlin for access to the ICP-AES, Mr. Antonio Coccina for comments on an earlier version of the manuscript, and Ms. Bogumila Tomczack, Ms. Wendy Sullivan, Ms. Rebecca Stonor and Mr. Antonio Coccina for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie J. Watts-Williams.

Additional information

Responsible Editor: Peter Christie

Electronic supplementary material

ESM 1

(DOCX 1046 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watts-Williams, S.J., Tyerman, S.D. & Cavagnaro, T.R. The dual benefit of arbuscular mycorrhizal fungi under soil zinc deficiency and toxicity: linking plant physiology and gene expression. Plant Soil 420, 375–388 (2017). https://doi.org/10.1007/s11104-017-3409-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-017-3409-4

Keywords

Navigation