Skip to main content
Log in

Response differences of arbuscular mycorrhizal fungi communities in the roots of an aquatic and a semiaquatic species to various flooding regimes

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Arbuscular mycorrhizal fungi (AMF) are ubiquitous in wetland habitats, but their diversity and distribution pattern in these habitats is poorly understood. Under varying hydrological conditions, AMF communities in roots of different wetland species may respond differently due to hydrological and to physiological differences among plants. Here we test this hypothesis.

Methods

AMF colonization intensity and community structure in the roots of two wetland plants with different flood tolerance (one aquatic and one semiaquatic) were characterized along a hydrologic gradient. A fragment covering partial SSU, the whole ITS and partial LSU rDNA region of AMF was amplified, cloned and sequenced from the roots of each host species.

Results

A total of 528 AMF sequences were obtained and sorted into 15 taxa based on phylogenetic analyses. A total of nine and 13 taxa, respectively, were found from the aquatic and semiaquatic host species; the AMF compositions of both sets of taxa were very similar. Intensive flooding inhibited the AMF colonization and diversity level in both cases, while moderate flooding caused distinctly different effects between the two wetland species.

Conclusions

AMF diversity level in wetland habitat is not necessarily low, even if few morphological structures of AMF are detected in the roots. The effects of hydrologic conditions on AMF communities in wetlands depend on both the flooding intensity and the adaptations of the wetland hosts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acinas SG, Sarma-Rupavtarm R, Klepac-Ceraj V, Polz MF (2005) PCR induced sequence artifacts and bias: insights from comparison of two 16S rRNA clone libraries constructed from the same sample. Appl Environ Microb 71:8966–8969

    Article  CAS  Google Scholar 

  • Baar J, Paradi I, Lucassen ECHET, Hudson-Edwards KA, Redecker D, Roelofs JGM, Smolder AJP (2011) Molecular analysis of AMF diversity in aquatic macrophytes: a comparison of oligotrophic and utra-oligotrophic lakes. Aquat Bot 94:53–61

    Article  CAS  Google Scholar 

  • Bailey-Serres J, Voesenek LACJ (2008) Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol 59:313–339

    Article  CAS  PubMed  Google Scholar 

  • Chen FQ, Xie ZQ (2011) Ecophysiological response of two herbaceous species to flooding. IEEE 4260–4263

  • Colmer TD, Voesenek LACJ (2009) Flooding tolerance: suites of plant traits in variable environments. Funct Plant Biol 36:665–681

    Article  Google Scholar 

  • Cotton TEA, Dumbrell AJ, Helgason T (2014) What goes in must come out: testing for biases in molecular analysis of arbuscular mycorrhizal fungal communities. PLoS One 9:e109234. doi:10.1371/journal.pone.0109234

    Article  PubMed  PubMed Central  Google Scholar 

  • R Development Core Team (2010) R: a language and environment for statistical computing. Austria, Vienna: R Foundation for Statistical Computing, ISBN 3-900051-07-0, URL http://www.R-project.org/

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Gosling P, Mead A, Proctor M, Hammond JP, Bending GD (2013) Contrasting arbuscular mycorrhizal communities colonizing different host plants show a similar response to a soil phosphorus concentration gradient. New Phytol 198:546–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grman E (2012) Plant species differ in their ability to reduce allocation to non-beneficial arbuscular mycorrhizal fungi. Ecology 93:711–718

    Article  PubMed  Google Scholar 

  • Harley JL, Harley EL (1987) A check-list of mycorrhiza in the British flora. New Phytol 105:1–102

    Article  Google Scholar 

  • Hirrel MC, Mehravaran H, Gerdemann JW (1978) Vesicular-arbuscular mycorrhizae in the Chenopodiaceae and Cruciferae: do they occur? Can J Bot 56:2813–2817

    Article  Google Scholar 

  • Holm LG, Plucknett DL, Pancho JV, Herberger JP (1977) The world’s worst weeds: distribution and biology. Univ. Press of Hawaii, Honolulu

    Google Scholar 

  • Hossain MA, Ishimine Y, Kuramochi H, Akamine H (2002) Effect of standing water and shoot removal plus standing water regimes on growth, regrowth and biomass production of torpedograss (Panicum repens L.). Weed Biol Manag 2:153–158

    Article  Google Scholar 

  • Kohout P, Sudová R, Janoškoá M, Ctvrtlíková M, Hejda M, Pánková H, Slavíková R, Štajerová K, Vosátka M, Sýkorová Z (2014) Comparison of commonly used primer sets for evaluating arbuscular mycorrhizal fungal communities: is there a universal solution? Soil Biol Biochem 68:482–493

    Article  CAS  Google Scholar 

  • Krüger M, Stockinger H, Krüger C, Schübler A (2009) DNA-based species level detection of Glomeromycota: one PCR primer set for all arbuscular mycorrhizal fungi. New Phytol 183:212–223

    Article  PubMed  Google Scholar 

  • Krüger M, Krüger C, Walker C, Stockinger H, Schüßler A (2012) Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol 193:970–984

    Article  PubMed  Google Scholar 

  • Lekberg Y, Rosendahl S, Michelsen A, Olsson PA (2013) Seasonal carbon allocation to arbuscular mycorrhizal fungi assessed by microscopic examination, stable isotope probing and fatty acid analyses. Plant Soil 368:547–555

    Article  CAS  Google Scholar 

  • Lekberg Y, Gibbons SM, Rosendahl S (2014) Will different OTU delineation methods change interpretation of arbuscular mycorrhizal fungal community patterns? New Phytol 202:1101–1104

    Article  PubMed  Google Scholar 

  • Lekberg Y, Rosendahl S, Olsson PA (2015) The fungal perspective of arbuscular mycorrhizal colonization in “non-mycorrhizal” plants. New Phytol 205:1399–1403

    Article  PubMed  Google Scholar 

  • López-García Á, Palenzuela J, Barea JM, Azcón-Aguilar C (2014) Life-history strategies of arbuscular mycorrhizal fungi determine succession into roots of Rosmarinus officinalis L., a characteristic woody perennial plant species from Mediterranean ecosystems. Plant Soil 379:247–260

    Article  Google Scholar 

  • Lumini E, Vallino M, Alguacil MM, Romani M, Bianciotto V (2011) Different farming and water regimes in Italian rice fields affect arbuscular mycorrhizal fungal soil communities. Ecol Appl 21:1696–1707

    Article  PubMed  Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JL (1990) A new method which gives an objective measure of colonization of roots by vesicular arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  Google Scholar 

  • Miller SP (2000) Arbuscular mycorrhizal colonization of semiaquatic grasses along a wide hydrologic gradient. New Phytol 145:145–155

    Article  Google Scholar 

  • Møller CL, Kjøller R, Sand-Jensen K (2013) Organic enrichment of sediments reduces arbuscular mycorrhizal fungi in oligotrophic lake plants. Freshw Biol 58:769–779

    Article  Google Scholar 

  • Nielsen KB, Kjøller R, Olsson PA, Schweiger PF, Andersen FØ, Rosendahl S (2004) Colonisation and molecular diversity of arbuscular mycorrhizal fungi in the aquatic plants Littorella uniflora and Lobelia dortmanna in southern Sweden. Mycol Res 108:616–625

    Article  CAS  PubMed  Google Scholar 

  • Öpik M, Metsis M, Daniell TJ, Zobel M, Moora M (2009) Large-scale parallel 454 sequencing reveals host ecological group specificity of arbuscular mycorrhizal fungi in a boreonemoral forest. New Phytol 184:424–437

    Article  PubMed  Google Scholar 

  • Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, Reier Ü, Zobel M (2010) The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol 188:223–241

    Article  PubMed  Google Scholar 

  • Page AL, Miller RH, Keeney DR (1982) Methods of soil analysis. ASA and SSSA, Madison

    Google Scholar 

  • Pan Y, Xie YH, Deng ZM, Tang Y, Pan DD (2014) High water level impedes the adaptation of Polygonum hydropiper to deep burial: Responses of biomass allocation and root morphology. Sci Rep 4:5612

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qin XY, Li F, Chen XS, Xie YH (2013) Growth responses and non-structural carbohydrates in three wetland macrophyte species following submergence and de-submergence. Acta Physiol Plant 35:2069–2074

    Article  CAS  Google Scholar 

  • Ray AM, Inouye RS (2006) Effects of water-level fluctuations on the arbuscular mycorrhizal colonization of Typha latifolia L. Aquat Bot 84:210–216

    Article  Google Scholar 

  • Roda JJ, Díaz G, Torres P (2008) Spatial distribution of arbuscular mycorrhizal fungi in the rhizosphere of the salt marsh plant Inula crithmoides L. along a salinity gradient. Arid Land Res Manag 22:310–319

    Article  Google Scholar 

  • Sanders IR (2003) Preference, specificity and cheating in the arbuscular mycorrhizal symbiosis. Trends Plant Sci 8:143–145

    Article  CAS  PubMed  Google Scholar 

  • Schechter SP, Bruns TD (2008) Serpentine and non-serpentine ecotypes of Collinsia sparsiflora associate with distinct arbuscular mycorrhizal fungal assemblages. Mol Ecol 17:3198–3210

    Article  CAS  PubMed  Google Scholar 

  • Schlichting E, Blume HP, Stahr K (1995) Bodenkundliches Praktikum. Blackwell Wissenschafts Verlag, Berlin

    Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hatmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microb 75:7537–7541

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic, Cambridge

    Google Scholar 

  • Søndergaard M, Laegaard S (1977) Vesicular-arbuscular mycorrhiza in some vascular plants. Nature 268:232–233

    Article  Google Scholar 

  • Stockinger H, Krüger M, Schübler A (2010) DNA barcoding of arbuscular mycorrhizal fungi. New Phytol 187:461–476

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torrecillas E, Alguacil MM, Roldán A (2012) Host preferences of arbuscular mycorrhizal fungi colonizing annual herbaceous plant species in semiarid Mediterranean prairies. Appl Environ Microb 78:6180–6186

    Article  CAS  Google Scholar 

  • Twanabasu BR, Smith CM, Stevens KJ, Venables BJ, Sears WC (2013) Triclosan inhibits arbuscular mycorrhizal colonization in three wetland plants. Sci Total Environ 447:450–457

    Article  CAS  PubMed  Google Scholar 

  • Vallino M, Fiorilli V, Bonfante P (2014) Rice flooding negatively impacts root branching and arbuscular mycorrhizal colonization, but not fungal viability. Plant Cell Environ 37:557–572

    Article  CAS  PubMed  Google Scholar 

  • van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  PubMed  Google Scholar 

  • Veresoglou SD, Rillig MC (2014) Do closely related plants host similar arbuscular mycorrhizal fungal communities? A meta-analysis. Plant Soil 377:395–406

    Article  CAS  Google Scholar 

  • Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363

    Article  CAS  PubMed  Google Scholar 

  • Wang YT, Qiu Q, Yang ZY, Hu ZJ, Tam NFY, Xin GR (2010) Arbuscular mycorrhizal fungi in two mangroves in South China. Plant Soil 331:181–191

    Article  CAS  Google Scholar 

  • Wang YT, Huang YL, Qiu Q, Xin GR, Yang ZY, Shi SH (2011) Flooding greatly affects the diversity of arbuscular mycorrhizal fungi (AMF) communities in the roots of wetland plants. PLoS One 6:e24512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YT, Qiu Q, Li SS, Xin GR, Tam NFY (2014) Inhibitory effect of municipal sewage on symbiosis between mangrove plants and arbuscular mycorrhizal fungi. Aquat Biol 20:119–127

    Article  CAS  Google Scholar 

  • Wang YT, Li T, Li Y, Björn LO, Rosendahl S, Olsson PA, Li SS, Fu XL (2015a) Community dynamics of arbuscular mycorrhizal fungi in high-input and intensively irrigated rice cultivation systems. Appl Environ Microb 81:2958–2965

    Article  CAS  Google Scholar 

  • Wang YT, Li T, Li YW, Qiu Q, Li SS, Xin GR (2015b) Distribution of arbuscular mycorrhizal fungi in four semi-mangrove plant communities. Ann Microbiol 65:603–610

    Article  CAS  Google Scholar 

  • Wilde P, Manal A, Stodden M, Sieverding E, Hildebrandt U (2009) Biodiversity of arbuscular mycorrhizal fungi in roots and soils of two salt marshes. Environ Microbiol 11:1548–1546

    Article  PubMed  Google Scholar 

  • Wirsel SGR (2004) Homogeneous stands of a wetland grass harbour diverse consortia of arbuscular mycorrhizal fungi. FEMS Microbiol Ecol 48:129–138

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Nicholas Rosenstock (Lund University), Prof. Søren Rosendahl (University of Copenhagen) and two anonymous reviewers for constructive suggestions and to Prof. Helen Ghiradella (The University at Albany) for language correction on the manuscript. This research was financially supported by grants from the Natural Science Foundation of China (31400365, 31070242), the Natural Science Foundation of Guangdong Province (2014A030310162), the Specialized Research Fund for the Doctoral Program of Higher Education of China (20134407120005, 20114407110006), the Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme (2012), the Science and Technology Program of Guangzhou (2014J4100053) and the Graduate Student Research Innovation Project of South China Normal University (2015lkxm22).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yutao Wang or Shaoshan Li.

Additional information

Responsible Editor: Tatsuhiro Ezawa.

Yingwei Li and Xiaozhe Bao are joint first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 38 kb)

ESM 2

(DOC 50 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Li, Y., Bao, X. et al. Response differences of arbuscular mycorrhizal fungi communities in the roots of an aquatic and a semiaquatic species to various flooding regimes. Plant Soil 403, 361–373 (2016). https://doi.org/10.1007/s11104-016-2811-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-016-2811-7

Keywords

Navigation