Skip to main content
Log in

Synergistic interactions between Bradyrhizobium japonicum and the endophyte Stenotrophomonas rhizophila and their effects on growth, and nodulation of soybean under salt stress

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Understanding the interactions between endophytic bacteria, rhizobia, free living root associated bacteria and their host plants under stressed conditions remains a significant challenge for proposing strategies to improve the efficacy of PGPR. In this study we analyzed the role of the endophytic bacterium Stenotrophomonas rhizophila in alleviating salinity stress in plants. The nodulation efficiency, plant growth, nitrogen and phosphorus uptake of soybean under hydroponic salt stress conditions were determined.

Methods

Soybean seedlings were inoculated with Bradyrhizobium japonicum BDYD1 and S. rhizophila ep-17 were grown in hydroponic plastic pots containing 2 l of Hoagland solution for 42 days. Salinity conditions were established by adding 50 and 75 mM NaCl to the nutrient solution.

Results

The results showed that the salinity decreased the colonization of B. japonicum BDYD1 in the rhizosphere of soybean, inhibited shoot, root growth, and nodulation compared with those of unstressed plants. We found synergistic interactions between compatible salt tolerant S. rhizophila ep-17 and B. japonicum BDYD1 strains which were manifested themselves as improved root, shoot length, dry weight, N and P uptake and number of nodules compared with the uninoculated plants grown under 75 mM NaCl condition.

Conclusions

S. rhizophila and Bradyrhizobium build beneficial association in the rhizosphere and can act synergistically on promoting plant growth, nutrient uptake and fitness of hydroponically grown soybean under salt stress condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alavi P, Starcher MR, Zachow C, Müller H, Berg G (2013) Root-microbe systems: the effect and mode of interaction of stress protecting agent (SPA) Stenotrophomonas rhizophila DSM14405T. Front Plant Sci 4:141

    Article  PubMed  PubMed Central  Google Scholar 

  • Al-Whaibi MH, Siddiqui MH, Al-Munqadhi BMA, Sakran AM, Ali HM, Basalah MO (2012) Influence of plant growth regulators on growth performance and photosynthetic pigments status of Eruca sativa Mill. J Med Plants Res 6:1948–1954

    CAS  Google Scholar 

  • Argaw A (2012) Evaluation of co-inoculation of Bradyrhizobium japonicum and phosphate solubilizing Pseudomonas spp. effect on soybean (Glycine max L. (Merr.)) in Assossa Area. J Agric Sci Tech 14:213–224

    CAS  Google Scholar 

  • Bano A, Yasmeen S (2010) Role of phytohormones under induced drought stress in wheat. Pak J Bot 42(4):2579–2587

    CAS  Google Scholar 

  • Berg G, Martinez JL (2015) Friends or foes: can we make a distinction between beneficial and harmful strains of the Stenotrophomonas maltophilia complex? Front Microbiol 6:241

    PubMed  PubMed Central  Google Scholar 

  • Berg G, Egamberdieva D, Lugtenberg B, Hagemann M (2010) Symbiotic plant-microbe interactions: stress protection, plant growth promotion and biocontrol by Stenotrophomonas. In: Seckbach J, Grube M (eds) Symbioses and stress, cellular origin, life in extreme habitats and astrobiology, Springer-Verlag 17(4):445–460

  • Berg G, Alavi M, Schmidt CS, Zachow C, Egamberdieva D, Kamilova F, Lugtenberg B (2013) Biocontrol and osmoprotection for plants under saline conditions. In: Frans J. de Bruijn (ed), Molecular microbial ecology of the rhizosphere, Wiley -Blackwell, USA

  • Beringer JB (1974) R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 84:188–198

    CAS  PubMed  Google Scholar 

  • Bianco C, Defez R (2009) Medicago truncatula improves salt tolerance when nodulated by an indole-3-acetic acid-overproducing Sinorhizobium meliloti strain. J Exp Bot 60:3097–3107

    Article  CAS  PubMed  Google Scholar 

  • Bruning B, Rozema J (2013) Symbiotic nitrogen fixation in legumes: perspectives for saline agriculture. Environ Exp Bot 92:134–143

    Article  CAS  Google Scholar 

  • Dardanelli MS, De Cordoba FJF, Espuny MR, Carvajal MAR, Diaz MES, Serrano AMG, Okon Y, Megias M (2008) Effect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under salt stress. Soil Biol Biochem 40:2713–2721

    Article  CAS  Google Scholar 

  • Dwevedi A, Kayastha AM (2011) Soybean: a multifaceted legume with enormous economic capabilities, soybean - biochemistry, chemistry and physiology, Tzi-Bun Ng (Ed.) In Tech

  • Egamberdieva D (2009) Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Phys Plant 31:861–864

    Article  CAS  Google Scholar 

  • Egamberdieva D (2012) Pseudomonas chlororaphis: a salt tolerant bacterial inoculant for plant growth stimulation under saline soil conditions. Acta Phys Plant 34:751–756

    Article  CAS  Google Scholar 

  • Egamberdieva D, Kucharova Z (2009) Selection for root colonising bacteria stimulating wheat growth in saline soils. Biol Fertil Soils 45:561–573

    Article  Google Scholar 

  • Egamberdieva D, Berg G, Lindstrom K, Rasanen L (2010a) Root colonizing Pseudomonas spp. improve growth and symbiosis performance of fodder galega (Galega orientalis LAM) grown in potting soil. Eur J Soil Biol 46(3–4):269–272

    Article  CAS  Google Scholar 

  • Egamberdieva D, Renella G, Wirth S, Islam R (2010b) Secondary salinity effects on soil microbial biomass. Biol Fertil Soils 46(5):445–449

    Article  CAS  Google Scholar 

  • Egamberdieva D, Kucharova Z, Davranov K, Berg G, Makarova N, Azarova T, Chebotar V, Tikhonovich I, Kamilova F, Validov S, Lugtenberg B (2011) Bacteria able to control foot and root rot and to promote growth of cucumber in salinated soils. Biol Fertil Soils 47:197–205

    Article  CAS  Google Scholar 

  • Egamberdieva D, Berg G, Lindström K, Räsänen LA (2013) Alleviation of salt stress of symbiotic Galega officinalis L. (goat's rue) by co-inoculation of Rhizobium with root colonizing Pseudomonas. Plant Soil 369(1):453–465

    Article  CAS  Google Scholar 

  • Egamberdieva D, Shurigin V, Gopalakrishnan S, Sharma R (2014) Growth and symbiotic performance of chickpea (Cicer arietinum) cultivars under saline soil conditions. J Biol Chem Res 31(1):333–341

    Google Scholar 

  • Egamberdiyeva D, Gafurova L, Islam KR (2007) Salinity effects on irrigated soil chemical and biological properties in the syrdarya basin of Uzbekistan. In: Lal R, Sulaimanov M, Stewart B, Hansen D, Doraiswamy P (eds) Climate change and terrestrial c sequestration in Central Asia. Taylor-Francis, New York, pp 147–162

    Chapter  Google Scholar 

  • Essa TA (2002) Effect of salinity on growth and nutrient composition of three soybean (Glycine max L.) cultivars. J Agric Crop Sci 188:86–93

    Article  CAS  Google Scholar 

  • Estévez J, Dardanelli MS, Megias M, Rodríguez-Navarro DN (2009) Symbiotic performance of common bean and soybean co inoculated with rhizobia and Chryseobacterium balustinum Aur9 under moderate saline conditions. Symbiosis 49(1):29–36

    Article  Google Scholar 

  • FAOSTAT (2013) FAOSTAT database, Food and Agriculture Organization of the United Nations. http://faostat.fao.org/

  • Garg N, Chandel S (2011) Effect of mycorrhizal inoculation on growth, nitrogen fixation and nutrient uptake in Cicer arietinum L. under salt stress. Turk J Agric For 35:205–214

    CAS  Google Scholar 

  • Golezani KG, Yengabad FM (2012) Physiological responses of lentil (Lens culinaris Medik.) to salinity. Int J Agric Crop Sci 4(20):1531–1535

    Google Scholar 

  • Gunawardena SFBN, Danso SKA, Zapata F (1992) Phosphorus requirement and nitrogen accumulation by three mung bean (Vigna radiata (L.) Welzek) cultivars. Plant Soil 147:267–274

    Article  CAS  Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  CAS  PubMed  Google Scholar 

  • Hamayun M, Khan SA, Shinwari ZK, Khan AK, Ahmad N, Lee IJ (2010) Effect of polyethylene glycol induced drought stress on physio-hormonal attributes of soybean. Pak J Bot 42:977–986

    CAS  Google Scholar 

  • Hashem FM, Swelim DM, Kuykendall LD, Mohamed AI, Abdel-Wahab SM, Hegazi NI (1998) Identification and characterization of salt and thermo-tolerant Leucaena nodulating Rhizobium strains. Biol Fertil Soil 27:335–341

    Article  CAS  Google Scholar 

  • Hellsten A, Huss-Danell K (2001) Interaction effects of nitrogen and phosphorus on nodulation in red clover (Trifolium pretense L.). Acta Agric Scand Sect B Soil Plant Sci 50:135–142

    Google Scholar 

  • Hiz MC, Canher B, Niron H, Turet M (2014) Transcriptome analysis of salt tolerant common bean (Phaseolus vulgaris L.) under saline conditions. PLoS One 9(3), e92598

    Article  PubMed  PubMed Central  Google Scholar 

  • Imai A, Matsuyama T, Hanzawa Y, Akiyama T, Tamaoki M, Saji H (2004) Spermidine synthase genes are essential for survival of Arabidopsis. Plant Physiol 135:1565–1573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imamul Huq SM, Larher F (1983) Osmoregulation in higher plants. Effect of NaCl salinity on non-nodulated Phaseolus aureus L. II. Changes in orgnaic solutes. New Phytol 93:209–216

    Article  Google Scholar 

  • Kaymakanova M (2009) Effect of salinity on germination and seed physiology in bean (Phaseolus vulgaris L.). Biotechnol Equip 23:326–329

    Article  Google Scholar 

  • Khurana AS, Sharma P (2000) Effect of dual inoculation of phosphate solubilizing bacteria, Bradyrhizobium sp. and phosphorus on nitrogen fixation and yield of chickpea. Indian J Pulses Res 13:66–67

    Google Scholar 

  • Lynch JP, Epstein E, Lauchli A, Weight GE (1990) An automated greenhouse sand culture system suitable for studies of P nutrition. Plant Cell Environ 13:547–554

    Article  CAS  Google Scholar 

  • Ma W, Guinel FC, Glick BR (2003) Rhizobium leguminosarum biovar. viciae 1-amino cyclopropane-1-carboxylate deaminase promotes nodulation of pea plants. Appl Environ Microbiol 69:4396–4402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molla AH, Shamsuddin ZH, Halimi MS, Morziah M, Puteh AB (2001) Potential for enhancement of root growth and nodulation of soybean coinoculated with Azospirillum and Bradyrhizobium in laboratory systems. Soil Biol Biochem 33:457–463

    Article  CAS  Google Scholar 

  • Murphy J, Riley J (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chem Acta 27:31–36

    Article  CAS  Google Scholar 

  • Nabti E, Sahnoune M, Adjrad S, Van Dommelen A, Ghoul M, Schmid M, Hartmann A (2007) A halophilic and osmotolerant Azospirillum brasilense strain from Algerian soil restores wheat growth under saline conditions. Eng Life Sci 7(4):354–360

    Article  CAS  Google Scholar 

  • Naz I, Bano A (2012) Assessment of phytohormones producing capacity of Stenotrophomonas maltophilia SSA and its interaction with Zea mays l. Pak J Bot 44(1):465–469

    CAS  Google Scholar 

  • Nelson DR, Mele PM (2007) Subtle changes in the rhizosphere microbial community structure in response to increased boron and sodium chloride concentrations. Soil Biol Biochem 39:340–351

    Article  CAS  Google Scholar 

  • Ofek M, Ruppel S, Waisel Y (2006) Effects of salinity on rhizosphere bacterial communities associated with different root types of Vicia faba L. In: Ozturk M, Waisel Y, Khan A, Gork G (eds) Biosaline agriculture and salinity tolerance in plants. Birkhauser Verlag, Basel, pp 1–21

    Chapter  Google Scholar 

  • Ondrasek G, Rengel Z, Romic D, Poljak M, Romic M (2009) Accumulation of non/essential elements in radish plants grown in salt-affected and cadmium contaminated environment. Cereal Res Commun 37:9–12

    CAS  Google Scholar 

  • Park M, Kin C, Yang J, Lee Y, Shin W, Kim S, Sa T (2005) Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiol Res 160:127–133

    Article  CAS  PubMed  Google Scholar 

  • Parvaiz A, Satyawati S (2008) Salt stress and phyto-biochemical responses of plants - a review. Plant Soil Environ 54(3):89

    CAS  Google Scholar 

  • Qureshi MA, Shakir MA, Naveed M, Ahmad MJ (2009) Growth and yield response of chickpea to co-inoculation with Mesorhizobium ciceri and Bacillus megaterium. J Anim Plant Sci 19(4):205–211

    Google Scholar 

  • Rabie GH, Almadini AM (2005) Role of bioinoculants in development of salt-tolerance of Vicia faba plants under salinity stress. Afr J Biotechnol 4(3):210–222

    CAS  Google Scholar 

  • Roder A, Hoffmann E, Hagemann M, Berg G (2005) Synthesis of the compatible solutes glucosylglycerol and trehalose by salt-stressed cells of Stenotrophomonas strains. FEMS Microb Lett 243:219–226

    Article  CAS  Google Scholar 

  • Rokhzadi A, Asgharzadeh A, Darvish F, Nour-Muhammadi G, Majidi E (2008) Influence of plant growth promotingrhizobacteria on dry matter accumulation and yield of chickpea (Cicer arietinum L.) under field conditions. Am Eur J Agric Environ Sci 3(2):253–257

    Google Scholar 

  • Rosas SB, Andres JA, Rovera M, Correa N (2006) Phosphate-solubilizing Pseudomonas putida can influence the rhizobia-legume symbiosis. Soil Biol Biochem 38:3502–3505

    Article  CAS  Google Scholar 

  • Schmidt CS, Alavi M, Cardinale M, Müller H, Berg G (2012) Stenotrophomonas rhizophila DSM14405T promotes plant growth probably by altering fungal communities in the rhizosphere. Biol Fertil Soils 48:947–960

    Article  Google Scholar 

  • Shaharoona B, Arshad M, Zahir ZA (2006) Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.). Lett Appl Microbiol 42(2):155–159

    Article  CAS  PubMed  Google Scholar 

  • Shahzad SM, Khalid A, Arshad M, Rehman K (2010) Improving nodulation, growth and yield of Cicer arietinum L. through bacterial ACC-deaminase induced changes in root architecture. Eur J Soil Biol 46(5):342–347

    Article  CAS  Google Scholar 

  • Siddiqui ZA, Mahmood I (2001) Effects of rhizobacteria and root symbionts on the reproduction of Meloidogyne javanica and growth of chickpea. Bioresour Technol 79(1):41–45

    Article  CAS  PubMed  Google Scholar 

  • Simons M, van der Bij AJ, Brand I, de Weger LA, Wijffelman CA, Lugtenberg B (1996) Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria. Mol Plant-Microbe Interact 9:600–607

    Article  CAS  PubMed  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic-acid in microbial and microorganism-plant signaling. FEMS Microb Rev 31:425–448

    Article  CAS  Google Scholar 

  • Subbarao GV, Johansen C, Jana MK, Rao JVDKK (1990) Physiological basis of differences in salinity tolerance of pigeonpea and its related wild species. J Plant Physiology 137(1):64–71

  • Suckstorff I, Berg G (2003) Evidence for dose-dependent effects on plant growth by Stenotrophomonas strains from different origins. J Appl Microbiol 95(4):656–663

    Article  CAS  PubMed  Google Scholar 

  • Tisdall JM, Odes JM (1982) Organic matter and water stable aggregates in soils. J Soil Sci 33:141–163

    Article  CAS  Google Scholar 

  • UNEP (2008) In Dead Water. Merging of climate change with pollution, over-harvest, and infestations in the world’s fishing grounds. UNEP/GRID-Arendal, Arendal, Norway. Available online at: http://www.grida.no/_res/site/file/publications/InDeadWater_LR.pdf

  • Upadhyay SK, Singh JS, Singh DP (2011) Exopolysaccharide-producing plant growth-promoting rhizobacteria under salinity condition. Pedosphere 2:214–222

    Article  Google Scholar 

  • Vincent JM (1970) A manual for the practical study of root nodule bacteria LBP Handbook No.15. Blackwell, Oxford, p 83

    Google Scholar 

  • Wolf A, Fritze A, Hagemann M, Berg G (2002) Stenotrophomonas rhizophila sp. nov., a novel plant-associated bacterium with antifungal properties. Int J Syst Evol Microbiol 52:1937–1944

    CAS  PubMed  Google Scholar 

  • Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63:968–989

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu B, Liu H, Tian WX, Fan XY, Li B, Zhou XP, Jin GL, Xie GL (2012) Genome Sequence of Stenotrophomonas maltophilia RR-10, Isolated as an endophyte from rice root. J Bacteriol 194(5):1280–1281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by the UNESCO/CHINA Fellowship for DJ and Alexander von Humboldt Fellowship for DE. We thank Prof. Hong Liao for providing us necessary research facilities at Root Biology Centre, South China Agricultural University, and Muhammad Adam for technical assistance in the greenhouse.

Author contribution

DE and GB did experimental design work, DJ conducted experiments. DE analyzed the data. DE and GB wrote the manuscript. All authors read and approved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilfuza Egamberdieva.

Additional information

Responsible Editor: Stéphane Compant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egamberdieva, D., Jabborova, D. & Berg, G. Synergistic interactions between Bradyrhizobium japonicum and the endophyte Stenotrophomonas rhizophila and their effects on growth, and nodulation of soybean under salt stress. Plant Soil 405, 35–45 (2016). https://doi.org/10.1007/s11104-015-2661-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-015-2661-8

Keywords

Navigation