Skip to main content
Log in

Effect of the aerenchymatous helophyte Glyceria maxima on the sulfate-reducing communities in two contrasting riparian grassland soils

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

The research aimed at studying the effect of flooding with sulfate-rich water on the activity, abundance and diversity of sulfate-reducing micro-organisms present in the root zone of an oxygen-releasing plant growing on two riparian grassland soils with contrasting amounts of iron.

Methods

A series of microcosms was used to investigate the effects. Plants were grown under controlled conditions in microcosms containing a rhizosphere and bulk soil compartment for a period of 12 weeks in the presence of sulfate-rich flood water. Molybdate-treated systems served as non-sulfate-reducing controls.

Results

At harvest, activity and numbers of sulfate-reducing micro-organisms were higher in the absence of molybdate, but a rhizosphere effect and an impact of the presence of high levels of iron were not observed on activity and numbers. Both soils had in common a diverse community of sulfate-reducing micro-organisms covering all major cultured bacterial taxa. The appearance of members of the Desulfovibrionaceae exclusively in the rhizosphere of G. maxima was the only unambiguous indication of a plant effect.

Conclusion

The presence of sulfate-rich flood water stimulated the activity and growth of a part of the sulfate-reducing community leading to a change in community composition. The proximity of aerenchymatous plant roots and the abundance of iron in the soil had a negligible effect on the sulfate-reducing community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Armstrong J, AfreenZobayed F, Armstrong W (1996) Phragmites die-back: Sulphide- and acetic acid-induced bud and root death, lignifications, and blockages within aeration and vascular systems. New Phytol 134:601–614

    Article  CAS  Google Scholar 

  • Bahr M, Crump BC, Klepac-Ceraj V, Teske A, Sogin ML, Hobbie JE (2005) Molecular characterization of sulfate-reducing bacteria in a New England salt marsh. Environ Microbiol 7:1175–1185

    Article  PubMed  CAS  Google Scholar 

  • Bak F, Pfennig N (1991) Sulfate-reducing bacteria in littoral sediment of Lake Constance. FEMS Microbiol Ecol 85:43–52

    Article  Google Scholar 

  • Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL (2005) GenBank. Nucleic Acids Res 33:D34–D38

    Article  PubMed  CAS  Google Scholar 

  • Bodelier PLE, Duyts H, Blom CWPM, Laanbroek HJ (1998) Interactions between nitrifying and denitrifying bacteria in gnotobiotic microcosms planted with the emergent macrophyte glyceria maxima. FEMS Microbiol Ecol 25:63–78

    Article  CAS  Google Scholar 

  • Brändle R, Crawford RMM (1987) Rhizome anoxia tolerance and habitat specialization in wetland plants. In: Crawford RMM (ed) Plant life in aquatic and amphibious habitats. Blackwell Scientific, Oxford, pp 397–410

    Google Scholar 

  • Chang YJ, Peacock AD, Long PE, Stephen JR, McKinley JP, Macnaughton SJ, Hussain A, Saxton AM, White DC (2001) Diversity and characterization of sulfate-reducing bacteria in groundwater at a uranium mill tailings site. Appl Environ Microbiol 67:3149–3160

    Article  PubMed  CAS  Google Scholar 

  • Choi JH, Park SS, Jaffe PR (2006) The effect of emergent macrophytes on the dynamics of sulfur species and trace metals in wetland sediments. Environ Pollut 140:286–293

    Article  PubMed  CAS  Google Scholar 

  • Cifuentes A, Anton J, de Wit R, Rodriguez-Valera F (2003) Diversity of Bacteria and Archaea in sulphate-reducing enrichment cultures inoculated from serial dilution of Zostera noltii rhizosphere samples. Environ Microbiol 5:754–764

    Article  PubMed  CAS  Google Scholar 

  • Conrad R, Klose M, Noll M, Kemnitz D, Bodelier PLE (2008) Soil type links microbial colonization of rice roots to methane emission. Glob Chang Biol 14:657–669

    Article  Google Scholar 

  • Finke N, Vandieken V, Jorgensen BB (2007) Acetate, lactate, propionate, and isobutyrate as electron donors for iron and sulfate reduction in Arctic marine sediments. Svalbard FEMS Microbiol Ecol 59:10–22

    Article  CAS  Google Scholar 

  • Harmsen HJM, Van Kuijk BLM, Plugge CM, Akkermans ADL, De Vos WM, Stams AJM (1998) Syntrophobacter fumaroxidans sp. nov., a syntrophic propionate-degrading sulfate-reducing bacterium. Int J Syst Bacteriol 48:1383–1387

    Article  PubMed  CAS  Google Scholar 

  • Heitmann T, Blodau C (2006) Oxidation and incorporation of hydrogen sulfide by dissolved organic matter. Chem Geol 235:12–20

    Article  CAS  Google Scholar 

  • Heitmann T, Goldhammer T, Beer J, Blodau C (2007) Electron transfer of dissolved organic matter and its potential significance for anaerobic respiration in a northern bog. Glob Chang Biol 13:1771–1785

    Article  Google Scholar 

  • Hines ME, Evans RS, Genthner BRS, Willis SG, Friedman S, Rooney-Varga JN, Devereux R (1999) Molecular phylogenetic and biogeochemical studies of sulfate-reducing bacteria in the rhizosphere of Spartina alterniflora. Appl Environ Microbiol 65:2209–2216

    PubMed  CAS  Google Scholar 

  • Holmkvist L, Ferdelman TG, Jorgensen BB (2011) A cryptic sulfur cycle driven by iron in the methane zone of marine sediment (Aarhus Bay, Denmark). Geochim Cosmochim Acta 75:3581–3599

    Article  CAS  Google Scholar 

  • Jorgensen BB (1978) Comparison of methods for the quantification of bacterial sulfate reduction in coastal marine-sediments.1. Measurement with radiotracer techniques. Geomicrobiol J 1:11–27

    Article  Google Scholar 

  • Joulian C, Ramsing NB, Ingvorsen K (2001) Congruent phylogenies of most common small-subunit rRNA and dissimilatory sulfite reductase gene sequences retrieved from estuarine sediments. Appl Environ Microbiol 67:3314–3318

    Article  PubMed  CAS  Google Scholar 

  • Kallmeyer J, Ferdelman TG, Weber A, Fossing H, Jorgensen BB (2004) A cold chromium distillation procedure for radiolabeled sulfide applied to sulfate reduction measurements. Limnol Oceanogr Methods 2:171–180

    Article  Google Scholar 

  • Kjeldsen KU, Tang L, Jorgensen MG, Ingvorsen K (2009) Enumeration and identification of dominant types of sulfate-reducing bacteria in pulp from a paper-recycling plant: a multiphasic approach. FEMS Microbiol Ecol 69:481–493

    Article  PubMed  CAS  Google Scholar 

  • Kusel K, Pinkart HC, Drake HL, Devereux R (1999) Acetogenic and sulfate-reducing bacteria inhabiting the rhizoplane and deep cortex cells of the sea grass Halodule wrightii. Appl Environ Microbiol 65:5117–5123

    PubMed  CAS  Google Scholar 

  • Laanbroek HJ (1990) Bacterial cycling of minerals that affect plant-growth in waterlogged soils—a review. Aquat Bot 38:109–125

    Article  Google Scholar 

  • Laanbroek HJ (2010) Methane emission from natural wetlands: interplay between emergent macrophytes and soil microbial processes. A mini-review. Ann Bot 105:141–153

    Article  PubMed  CAS  Google Scholar 

  • Laanbroek HJ, Abee T, Voogd IL (1982) Alcohol conversions by Desulfobulbus propionicus Lindhorst in the presence and absence of sulfate and hydrogen. Arch Microbiol 133:178–184

    Article  CAS  Google Scholar 

  • Laanbroek HJ, Geerligs HJ, Sijtsma L, Veldkamp H (1984) Competition for sulfate and ethanol among Desulfobacter, Desulfobulbus, and Desulfovibrio species isolated from intertidal sediments. Appl Environ Microbiol 47:329–334

    PubMed  CAS  Google Scholar 

  • Loeb R, Lamers LPM, Roelofs JGM (2008) Effects of winter versus summer flooding and subsequent desiccation on soil chemistry in a riverine hay meadow. Geoderma 145:84–90

    Article  CAS  Google Scholar 

  • Loy A, Kusel K, Lehner A, Drake HL, Wagner M (2004) Microarray and functional gene analyses of sulfate-reducing prokaryotes in low-sulfate, acidic fens reveal cooccurrence of recognized genera and novel lineages. Appl Environ Microbiol 70:6998–7009

    Article  PubMed  CAS  Google Scholar 

  • Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar BA, Lai T, Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, Konig A, Liss T, Lussmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371

    Article  PubMed  CAS  Google Scholar 

  • Madrid VM, Aller RC, Aller JY, Chistoserdov AY (2006) Evidence of the activity of dissimilatory sulfate-reducing prokaryotes in nonsulfidogenic tropical mobile muds. FEMS Microbiol Ecol 57:169–181

    Article  PubMed  CAS  Google Scholar 

  • McGrath SP, Mico C, Curdy R, Zhao FJ (2010) Predicting molybdenum toxicity to higher plants: Influence of soil properties. Environ Pollut 158:3095–3102

    Article  PubMed  CAS  Google Scholar 

  • Miletto M, Bodelier PLE, Laanbroek HJ (2007) Improved PCR-DGGE for high resolution diversity screening of complex sulfate-reducing prokaryotic communities in soils and sediments. J Microbiol Methods 70:103–111

    Article  PubMed  CAS  Google Scholar 

  • Miletto M, Loy A, Antheunisse AM, Loeb R, Bodelier PLE, Laanbroek HJ (2008) Biogeography of sulfate-reducing prokaryotes in river floodplains. FEMS Microbiol Ecol 64:395–406

    Article  PubMed  CAS  Google Scholar 

  • Miletto M, Loeb R, Antheunisse AM, Bodelier PLE, Laanbroek HJ (2010) Response of the sulfate-reducing community to the re-establishment of estuarine conditions in two contrasting soils: a mesocosm approach. Microb Ecol 59:109–120

    Article  PubMed  CAS  Google Scholar 

  • Muyzer G, Stams AJM (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol 6:441–454

    PubMed  CAS  Google Scholar 

  • Nakazawa H, Arakaki A, Narita-Yamada S, Yashiro I, Jinno K, Aoki N, Tsuruyama A, Okamura Y, Tanikawa S, Fujita N, Takeyama H, Matsunaga T (2009) Whole genome sequence of Desulfovibrio magneticus strain RS-1 revealed common gene clusters in magnetotactic bacteria. Genome Res 19:1801–1808

    Article  PubMed  CAS  Google Scholar 

  • Nijburg JW, Coolen MJL, Gerards S, Gunnewiek PJAK, Laanbroek HJ (1997) Effects of nitrate availability and the presence of glyceria maxima the composition and activity of the dissimilatory nitrate-reducing bacterial community. Appl Environ Microbiol 63:931–937

    PubMed  CAS  Google Scholar 

  • Oremland RS, Capone DG (1988) Use of specific inhibitors in biogeochemistry and microbial ecology. Adv Microb Ecol 10:285–383

    Article  CAS  Google Scholar 

  • Parkes RJ, Gibson GR, Muellerharvey I, Buckingham WJ, Herbert RA (1989) Determination of the substrates for sulfate-reducing bacteria within marine and estuarine sediments with different rates of sulfate reduction. J Gen Microbiol 135:175–187

    CAS  Google Scholar 

  • Pester M, Knorr K-H, Friedrich MW, Wagner M, Loy A (2012) Sulfate-reducing microorganisms in wetlands – fameless actors in carbon cycling and climate change. Front Microbiol 3(72):1–19

    Google Scholar 

  • Plugge CM, Zhang W, Scholten JCM, Stams AJM (2011) Metabolic flexibility of sulfate-reducing bacteria. Front Microbiol 2:81

    Article  PubMed  CAS  Google Scholar 

  • Ponnamperuma FN (1972) The chemistry of submerged soils. Adv Agron 24:29–96

    Google Scholar 

  • Rabus R, Hansen T, Widdel F (2006) Dissimilatory sulfate- and sulfur-reducing prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 659–768

    Chapter  Google Scholar 

  • Rees APT, Jenkins LET, Smith AM, Wilson PM (1987) Plant life in aquatic and amphibious habitats. In: Crawford RMM (ed) The metabolism of lood-tolerant plants. Blackwell Scientific, Oxford, pp 227–238

    Google Scholar 

  • Roden EE, Wetzel RG (1996) Organic carbon oxidation and suppression of methane production by microbial Fe(III) oxide reduction in vegetated and unvegetated freshwater wetland sediments. Limnol Oceanogr 41:1733–1748

    Article  CAS  Google Scholar 

  • Rowe R, Todd R, Waide J (1977) Microtechnique for most-probable-number analysis. Appl Environ Microbiol 33:675–680

    PubMed  CAS  Google Scholar 

  • Scheid D, Stubner S (2001) Structure and diversity of Gram-negative sulfate-reducing bacteria on rice roots. FEMS Microbiol Ecol 36:175–183

    Article  PubMed  CAS  Google Scholar 

  • Smirnoff N, Crawford RMM (1983) Variation in the structure and response to flooding of root aerenchyma in some wetland plants. Ann Bot 51:237–249

    Google Scholar 

  • Smith SW, Overbeek R, Woese CR, Gilbert W, Gillevet PM (1994) The genetic data environment an expandable guide for multiple sequence-analysis. Comput Appl Biosci 10:671–675

    PubMed  CAS  Google Scholar 

  • Stubner S (2004) Quantification of Gram-negative sulphate-reducing bacteria in rice field soil by 16S rRNA gene-targeted real-time PCR. J Microbiol Methods 57:219–230

    Article  PubMed  CAS  Google Scholar 

  • Stubner S, Meuser K (2000) Detection of Desulfotomaculum in an Italian rice paddy soil by 16S ribosomal nucleic acid analyses. FEMS Microbiol Ecol 34:73–80

    Article  PubMed  CAS  Google Scholar 

  • Tabatabai MA (1974) Rapid method for determination of sulfate in water samples. Environ Lett 7:237–243

    Article  CAS  Google Scholar 

  • Widdel F (1980) Anaerober Abbau von Fettsäuren und Benzoesäure durch neu isolierte Arten sulfat-reduzierender Bacterien. Georg-August-Universität, Göttingen, p 443

    Google Scholar 

  • Widdel F (2006) The genus Desulfotomaculum. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 787–794

    Chapter  Google Scholar 

  • Wieder RK, Yavitt JB, Lang GE (1990) Methane production and sulfate reduction in 2 Appalachian peatlands. Biogeochemistry 10:81–104

    Article  Google Scholar 

  • Wind T, Conrad R (1995) Sulfur compounds, potential turnover of sulfate and thiosulfate, and numbers of sulfate-reducing bacteria in planted and unplanted paddy soil. FEMS Microbiol Ecol 18:257–266

    Article  CAS  Google Scholar 

  • Wind T, Conrad R (1997) Localization of sulfate reduction in planted and unplanted rice field soil. Biogeochemistry 37:253–278

    Article  CAS  Google Scholar 

  • Zverlov V, Klein M, Lucker S, Friedrich MW, Kellermann J, Stahl DA, Loy A, Wagner M (2005) Lateral gene transfer of dissimilatory (bi)sulfite reductase revisited. J Bacteriol 187:2203–2208

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Maaike Blauw, Fulvia Bracco and Miranda Kamst-van Agterveld for assistance during the microcosm experiment. Thanks also to Wim van Doesburg, Paul van der Ven and Thilo Behrends for their help with pore water analyses. Martijn Antheunisse, Roos Loeb, Leon Lamers and Caroline Plugge are acknowledged for stimulating discussions. We also want to acknowledge the valuable contribution of two unknown reviewers to the content of the paper. The Netherlands Organization for Scientific Research (NWO) funded this research. It was part of the TRIAS project ‘Biogeochemical constraints for sustainable development of floodplains in riverine regions’ (835.80.010, research area ‘Ecology and Soil Quality’, theme ‘Space for the River’). This is the publication no. 5413 of the Netherlands Institute of Ecology (NIOO-KNAW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. J. Laanbroek.

Additional information

Responsible Editor: Liz Shaw.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miletto, M., Bodelier, P.L.E., Ferdelman, T.G. et al. Effect of the aerenchymatous helophyte Glyceria maxima on the sulfate-reducing communities in two contrasting riparian grassland soils. Plant Soil 370, 73–87 (2013). https://doi.org/10.1007/s11104-013-1608-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-013-1608-1

Keywords

Navigation