Skip to main content

Advertisement

Log in

Nitrogen deposition increases susceptibility to drought - experimental evidence with the perennial grass Molinia caerulea (L.) Moench

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

We investigated the response of the perennial grass Molinia caerulea (L.) Moench to combined effects of fertilization (N, P) and drought events. We hypothesized that N fertilization increases, and drought decreases productivity, but that N addition strengthens negative effects caused by drought.

Methods

Within a full-factorial 2-year greenhouse experiment we measured biomass productivity and allocation, tissue nutrient concentrations and nitrogen allocation patterns using 15N as a tracer.

Results

N fertilization caused a strong increase in productivity, but effects of drought were almost insignificant. However, we found strongly interrelated, non-additive effects of fertilization and drought, expressed by a strong increase of necrotic tissue. Dead aboveground biomass showed the highest values for N and 15N.

Conclusions

Accelerated productivity of aboveground tissue under N fertilization resulted in increased evaporative demands and thus higher drought susceptibility. In addition 15N allocation patterns showed that fertilization-drought treatments disenabled plants’ control of their N allocation. Molinia was unable to withdraw leaf N during the dieback of aboveground tissue. Due to the lack of an adaptive strategy to the combined effects of fertilization and drought, increasing summer drought may weaken the competitive performance of species with traits comparable to those of Molinia in N-fertilized environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aerts R (1990) Nutrient use efficiency in evergreen and deciduous species from heathlands. Oecologia 84:391–397

    Google Scholar 

  • Aerts R, Bobbink R (1999) The impact of atmospheric nitrogen deposition on vegetation processes in terrestrial, non-forest ecosystems. In: Langan SJ (ed) The impact of nitrogen deposition on natural and semi-natural ecosystems. Kluwer, Dordrecht, pp 85–122

    Google Scholar 

  • Aerts R, Chapin FS III (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30:1–67

    Article  CAS  Google Scholar 

  • Aerts R, Boot RGA, van der Aart PJM (1991) The relation between above- and belowground biomass allocation patterns and competitive ability. Oecologia 87:551–559

    Article  Google Scholar 

  • Alonso I, Hartley SE, Thurlow M (2001) Competition between heather and grasses on Scottish moorlands: interacting effects of nutrient enrichment and grazing regime. J Veg Sci 12:249–260

    Article  Google Scholar 

  • Andresen LC, Michelsen A, Jonasson S, Schmidt IK, Mikkelsen TN, Ambus P, Beier C (2010) Plant nutrient mobilization in temperate heathland responds to elevated CO2, temperature and drought. Plant Soil 328:381–396

    Article  CAS  Google Scholar 

  • Asseng S, Ritchie JT, Smucker AJM, Robertson MJ (1998) Root growth and water uptake during water deficit and recovering in wheat. Plant Soil 201:265–273

    Article  CAS  Google Scholar 

  • Baeten L, De Frenne P, Verheyen K, Graae BJ, Hermy M (2010) Forest herbs in the face of global change: a single-species-multiple-threats approach for Anemone nemorosa. Plant Ecol Evol 143:19–30

    Article  Google Scholar 

  • Barnard R, Le Roux X, Hungate BA, Cleland EE, Blankinship JC, Barthes L, Leadley PW (2006) Several components of global change alter nitrifying and denitrifying activities in an annual grassland. Funct Ecol 20:557–564

    Article  Google Scholar 

  • Betson NR, Johannisson C, Löfvenius MO, Grip H, Granström A, Högberg P (2007) Variation in the δ13C of foliage of Pinus sylvestris L. in relation to climate and additions of nitrogen: analysis of a 32-year chronology. Glob Change Biol 13:2317–2328

    Article  Google Scholar 

  • Bobbink R, Hornung M, Roelofs JGM (1998) The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. J Ecol 86:717–738

    Article  CAS  Google Scholar 

  • Boot RGA (1989) The significance of size and morphology of root systems for nutrient acquisition and competition. In: Lambers H (ed) Causes and consequences of variation in growth rate and productivity of higher plants. SPB Academic Publishing, The Hague, pp 299–311

    Google Scholar 

  • Boyer AG, Swearingen RE, Blaha MA, Fortson CT, Gremillion SK, Osborn KA, Moran MD (2003) Seasonal variation in top-down and bottom-up processes in a grassland arthropod community. Oecologia 136:309–316

    Article  PubMed  Google Scholar 

  • Britton AJ, Pakeman RJ, Carey PD, Marrs RH (2001) Impacts of climate, management and nitrogen deposition on the dynamics of lowland heathland. J Veg Sci 12:797–806

    Article  Google Scholar 

  • Brooks JR, Coulombe R (2009) Physiological responses to fertilization recorded in tree rings: isotopic lessons from a long-term fertilization trial. Ecol Appl 19:1044–1060

    Article  PubMed  Google Scholar 

  • Brys R, Jacquemyn H, De Blust G (2005) Fire increases aboveground biomass, seed production and recruitment success of Molinia caerulea in dry heathland. Acta Oecol-Int J Ecol 28:299–305

    Article  Google Scholar 

  • Chambers FM, Mauquoy D, Todd PA (1999) Recent rise to dominance of Molinia caerulea in environmentally sensitive areas: new perspectives from palaeoecological data. J Appl Ecol 36:719–733

    Article  Google Scholar 

  • Chapin FS III, Bloom AJ, Field CB, Waring RH (1987) Plant responses to multiple environmental factors. Bioscience 37:49–57

    Article  Google Scholar 

  • Clark CM, Tilman D (2008) Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature 451:712–715

    Article  PubMed  CAS  Google Scholar 

  • Damgaard C, Riis-Nielsen T, Schmidt IK (2009) Estimating plant competition coefficients and predicting community dynamics from non-destructive pin-point data: a case study with Calluna vulgaris and Deschampsia flexuosa. Plant Ecol 201:687–697

    Article  Google Scholar 

  • Diemont WH, Heil GW (1984) Some long-term observations on cyclical and seral processes in Dutch heathlands. Biol Conserv 30:283–290

    Article  Google Scholar 

  • Ericsson T (1995) Growth and shoot: root ratio of seedlings in relation to nutrient availability. Plant Soil 168–169:205–214

    Article  Google Scholar 

  • Falk K, Friedrich U, von Oheimb G, Mischke K, Merkle K, Meyer H, Härdtle W (2010) Molinia caerulea responses to N and P fertilisation in a dry heathland ecosystem (NW-Germany). Plant Ecol 209:47–56

    Article  Google Scholar 

  • Fotelli MN, Rennenberg H, Geßler A (2002) Effects of drought on the competitive interference of an early successional species (Rubus fruticosus) on Fagus sylvatica L. seedlings: 15N uptake and partitioning, responses of amino acids and other N compounds. Plant Biol 4:311–320

    Article  CAS  Google Scholar 

  • Fotelli MN, Rudolph P, Rennenberg H, Geßler A (2005) Irradiance and temperature affect the competitive interference of blackberry on the physiology of European beech seedlings. New Phytol 165:453–462

    Article  PubMed  Google Scholar 

  • Friedrich U, Falk K, Bahlmann E, Marquardt T, Meyer H, Niemeyer T, Schemmel S, von Oheimb G, Härdtle W (2011a) Fate of airborne nitrogen in heathland ecosystems: a 15N tracer study. Glob Change Biol 17:1549–1559

    Article  Google Scholar 

  • Friedrich U, von Oheimb G, Dziedek C, Kriebitzsch WU, Selbmann K, Härdtle W (2011b) Mechanisms of Molinia caerulea encroachment in dry heathland ecosystems with chronic nitrogen inputs. Environ Pollut. doi:10.1016/j.envpol.2011.08.010

  • Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vörösmarty CJ (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226

    Article  CAS  Google Scholar 

  • Goldberg DE (1990) Components of resource competition in plant communities. In: Grace JB, Tilman D (eds) Perspectives on plant competition. Academic, San Diego, pp 27–49

    Google Scholar 

  • Gonzalez-Dugo V, Durand J-L, Gastal F (2010) Water deficit and nitrogen nutrition of crops. A review. Agron Sustain Dev 30:529–544

    Article  CAS  Google Scholar 

  • Gordon C, Woodin SJ, Alexander IJ, Mullins CE (1999) Effects of increased temperature, drought and nitrogen supply on two upland perennials of contrasting functional type: Calluna vulgaris and Pteridium aquilinum. New Phytol 142:243–258

    Article  Google Scholar 

  • Gorissen A, Tietema A, Joosten NN, Estiarte M, Penuelas J, Sowerby A, Emmett BA, Beier C (2004) Climate change affects carbon allocation to the soil in shrublands. Ecosystems 7:650–661

    Article  CAS  Google Scholar 

  • Grime JP, Brown VK, Thompson K, Masters GJ, Hillier SH, Clarke IP, Askew AP, Corker D, Kielty JP (2000) The response of two contrasting limestone grasslands to simulated climate change. Science 289:762–765

    Article  PubMed  CAS  Google Scholar 

  • Härdtle W, von Oheimb G, Gerke AK, Niemeyer M, Niemeyer T, Assmann T, Drees C, Matern A, Meyer H (2009) Shifts in N and P budgets of heathland ecosystems: effects of management and atmospheric inputs. Ecosystems 12:298–310

    Article  Google Scholar 

  • Högberg P, Johannisson C, Hällgren J-E (1993) Studies of 13C in the foliage reveal interactions between nutrients and water in forest fertilization experiments. Plant Soil 152:207–214

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Kahmen A, Perner J, Buchmann N (2005) Diversity-dependent productivity in semi-natural grasslands following climate perturbations. Funct Ecol 19:594–601

    Article  Google Scholar 

  • Lösch R (2001) Wasserhaushalt der Pflanzen. Quelle & Meyer, Wiebelsheim

    Google Scholar 

  • MacGillivray CW, Grime JP, Band SR, Booth RE, Campbell B, Hendry GAF, Hillier SH, Hodgson JG, Hunt R, Jalili A, Mackey JML, Mowforth MA, Neal AM, Reader R, Rorison IH, Spencer RE, Thompson K, Thorpe PC (1995) Testing predictions of the resistance and resilience of vegetation subjected to extreme events. Funct Ecol 9:640–649

    Article  Google Scholar 

  • Marcos E, Calvo L, Luis-Calabuig E (2003) Effects of fertilization and cutting on the chemical composition of vegetation and soils of mountain heathlands in Spain. J Veg Sci 14:417–424

    Article  Google Scholar 

  • Morecroft MD, Masters GJ, Brown VK, Clarke IP, Taylor ME, Whitehouse AT (2004) Changing precipitation patterns alter plant community dynamics and succession in an ex-arable grassland. Funct Ecol 18:648–655

    Article  Google Scholar 

  • Müller I, Schmid B, Weiner J (2000) The effect of nutrient availability on biomass allocation patterns in 27 species of herbaceous plants. Perspect Plant Ecol Evol Syst 3:115–127

    Article  Google Scholar 

  • Nadelhoffer KJ, Colman BP, Currie WS, Magill A, Aber JD (2004) Decadal-scale fates of 15N tracers added to oak and pine stands under ambient and elevated N inputs at the Harvard Forest (USA). For Ecol Manage 196:89–107

    Article  Google Scholar 

  • Nilsen P (1995) Effect of nitrogen on drought strain and nutrient uptake in Norway spruce Picea abies (L.) Karst.) trees. Plant Soil 172:73–85

    Article  CAS  Google Scholar 

  • Peñuelas J, Gordon C, Llorens L, Nielsen T, Tietema A, Beier C, Bruna P, Emmett B, Estiarte M, Gorissen A (2004) Nonintrusive field experiments show different plant responses to warming and drought among sites, seasons, and species in a north-south European gradient. Ecosystems 7:598–612

    Article  Google Scholar 

  • Ritchie ME (2000) Nitrogen limitation and trophic vs. abiotic influences on insect herbivores in a temperate grassland. Ecology 81:1601–1612

    Article  Google Scholar 

  • Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Biodiversity-global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  PubMed  CAS  Google Scholar 

  • Salim KA, Carter PL, Shaw S, Smith CA (1988) Leaf abscission zones in Molinia caerulea (L.) Moench, the purple moor grass. Ann Bot 62:429–434

    Google Scholar 

  • Saneoka H, Moghaieb REA, Premachandra GS, Fujita K (2004) Nitrogen nutrition and water stress effects on cell membrane stability and leaf water relations in Agrostis palustris Huds. Environ Exp Bot 52:131–138

    Article  CAS  Google Scholar 

  • Schlichting E, Blume H-P, Stahr K (1995) Bodenkundliches Praktikum: Eine Einführung in pedologisches Arbeiten für Ökologen, insbesondere Land- und Forstwirte, und für Geowissenschaftler, 2nd edn. Blackwell, Berlin

    Google Scholar 

  • Schmidt IK, Tietema A, Williams D, Gundersen P, Beier C, Emmett BA, Estiarte M (2004) Soil solution chemistry and element fluxes in three European heathlands and their responses to warming and drought. Ecosystems 7:638–649

    Article  CAS  Google Scholar 

  • Shah NH, Paulsen GM (2003) Interaction of drought and high temperature on photosynthesis and grain-filling of wheat. Plant Soil 257:219–226

    Article  CAS  Google Scholar 

  • Stevens CJ, Dise NB, Gowing DJG, Mountford JO (2006) Loss of forb diversity in relation to nitrogen deposition in the UK: regional trends and potential controls. Glob Change Biol 12:1823–1833

    Article  Google Scholar 

  • Taylor K, Rowland AP, Jones HE (2001) Molinia caerulea (L.) Moench. J Ecol 89:126–144

    Article  Google Scholar 

  • Thornton B (1991) Effect of nutrition on the short-term response of Molinia caerulea to defoliation. Ann Bot 68:569–576

    Google Scholar 

  • Timmer VR, Stone EL (1978) Comparative foliar analysis of young balsam fir fertilized with nitrogen, phosphorus, potassium, and lime. Soil Sci Soc Am J 42:125–130

    Article  CAS  Google Scholar 

  • Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008) Global change and species interactions in terrestrial ecosystems. Ecol Lett 11:1351–1363

    Article  PubMed  Google Scholar 

  • van Heerwaarden LM, Toet S, van Logtestijn RSP, Aerts R (2005) Internal nitrogen dynamics in the graminoid Molinia caerulea under higher N supply and elevated CO2 concentrations. Plant Soil 277:255–264

    Article  CAS  Google Scholar 

  • Verhoeven JTA, Koerselman W, Meuleman AFM (1996) Nitrogen- or phosphorus-limited growth in herbaceous, wet vegetation: relations with atmospheric inputs and management regimes. Trends Ecol Evol 11:494–497

    Article  PubMed  CAS  Google Scholar 

  • von Oheimb G, Power SA, Falk K, Friedrich U, Mohamed A, Krug A, Boschatzke N, Härdtle W (2010) N:P ratio and the nature of nutrient limitation in Calluna-dominated heathlands. Ecosystems 13:317–327

    Article  CAS  Google Scholar 

  • Walther GR (2010) Community and ecosystem responses to recent climate change. Philos Trans R Soc B 365:2019–2024

    Article  Google Scholar 

  • Ward JK, Tissue DT, Thomas RB, Strain BR (1999) Comparative responses of model C3 and C4 plants to drought in low and elevated CO2. Glob Change Biol 5:857–867

    Article  Google Scholar 

  • Xu Z, Zhou G, Shimizu H (2009) Are plant growth and photosynthesis limited by pre-drought following rewatering in grass? J Exp Bot 60:3737–3749

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uta Friedrich.

Additional information

Responsible Editor: Harry Olde Venterink.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedrich, U., von Oheimb, G., Kriebitzsch, WU. et al. Nitrogen deposition increases susceptibility to drought - experimental evidence with the perennial grass Molinia caerulea (L.) Moench. Plant Soil 353, 59–71 (2012). https://doi.org/10.1007/s11104-011-1008-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-011-1008-3

Keywords

Navigation