Skip to main content
Log in

Temporal dynamics of exchangeable K, Ca and Mg in acidic bulk soil and rhizosphere under Norway spruce (Picea abies Karst.) and beech (Fagus sylvatica L.) stands

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

The aim of this study was to assess the seasonal influence on the dynamics of exchangeable nutrients (K, Ca and Mg) in acidic and nutrient-poor forest soils, where nutrients can become limiting for tree growth.

Methods

The amounts of exchangeable base cations (K++Ca2++Mg2+) were measured in soil samples collected in three soil compartments (Bulk, Outer Rhizosphere, and Inner Rhizosphere) and in 4 months (November, February, May and August) under two stands of 31-year-old Norway spruce and beech in an acidic temperate forest.

Results

In all season, both rhizosphere compartments were enriched in exchangeable nutrients compared to bulk soil. This suggests that tree roots and root-associated microorganisms (bacteria and mycorrhizal fungi) increased nutrient availability through mineral weathering or mineralization processes, and thus could contribute to forest sustainability in nutrient-poor conditions. Interestingly, in contrast to beech, a drastic decrease of exchangeable base cations was observed in bulk soil of spruce between November and February (higher than 80% for K and Mg, and 100% for Ca). The relation between this decrease, Al solubility, and nitrate concentration are evoked in the discussion.

Conclusion

This study reveals that processes resulting from interactions between trees, microorganisms and soil influence not only the seasonal dynamics of nutrients in the root vicinity but also the bulk soil function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • April R, Keller D (1990) Mineralogy of the rhizosphere in forest soils of the eastern United-States-Mineralogic studies of the rhizosphere. Biogeochemistry 9:1–18

    Article  Google Scholar 

  • Bakker MR, Dieffenbach A, Ranger J (1999a) Soil solution chemistry in the rhizosphere of roots of sessile oak (Quercus petraea) as influenced by lime. Plant Soil 209:209–216

    Article  CAS  Google Scholar 

  • Bakker MR, Kerisit K, Verbist K, Nys C (1999b) Effects of liming on rhizosphere chemistry and growth of fine roots and of shoots of sessile oak (Quercus petraea). Plant Soil 217:243–255

    Article  Google Scholar 

  • Bakker MR, George E, Turpault MP, Zhang JL, Zeller B (2004) Impact of Douglas-fir and Scots pine seedlings on plagioclase weathering under acidic conditions. Plant Soil 266:247–259

    Article  CAS  Google Scholar 

  • Belleau A, Brais S, Pare D (2006) Soil nutrient dynamics after harvesting and slash treatments in boreal aspen stands. Soil Sci Soc Am J 70:1189–1199

    Article  CAS  Google Scholar 

  • Braun M, Dieffenbach A, Matzner E (2001) Soil solution chemistry in the rhizosphere of beech (Fagus silvatica L.) roots as influenced by ammonium supply. J Plant Nutr Soil Sci 164:271–277

    Article  CAS  Google Scholar 

  • Calvaruso C, Turpault MP, Frey-Klett P (2006) Root-associated bacteria contribute to mineral weathering and to mineral nutrition in trees: A budgeting analysis. Appl Environ Microbiol 72:1258–1266

    Article  PubMed  CAS  Google Scholar 

  • Calvaruso C, Mareschal L, Turpault MP, Leclerc E (2009) Rapid Clay Weathering in the Rhizosphere of Norway Spruce and Oak in an Acid Forest Ecosystem. Soil Sci Soc Am J 73:331–338

    Article  CAS  Google Scholar 

  • Calvaruso C, Turpault MP, Leclerc RJ, Garbaye J, Uroz S, Frey-Klett P (2010) Influence of forest trees on the distribution of mineral weathering-associated bacterial communities of the Scleroderma citrinum mycorrhizosphere. Appl Environ Microbiol 76:4780–4787

    Article  PubMed  CAS  Google Scholar 

  • Calvaruso C, N’Dira V, Turpault MP (2011) Impact of common European tree species and Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) on the physicochemical properties of the rhizosphere. Plant Soil 342:469–480

    Article  CAS  Google Scholar 

  • Clegg S, Gobran GR (1997) Rhizospheric P and K in forest soil manipulated with ammonium sulfate and water. Can J Soil Sci 77:525–533

    Article  Google Scholar 

  • Colin-Belgrand M, Dambrine E, Bienaime S, Nys C, Turpault MP (2003) Influence of tree roots on nitrogen mineralization. Scand J Forest Res 18:260–268

    Article  Google Scholar 

  • Collignon C, Uroz S, Turpault MP, Frey-Klett P (2011) Seasons differently impact the structure of mineral weathering bacterial communities in beech and spruce stands. Soil Biol Biochem. doi:10.1016/j.soilbio.2011.05.008

  • Courchesne F, Gobran GR (1997) Mineralogical variations of bulk and rhizosphere soils from a Norway spruce stand. Soil Sci Soc Am J 61:1245–1249

    Article  CAS  Google Scholar 

  • Courchesne F, Côté B, Fyles JW, Hendershot WH, Biron PM, Roy AG, Turmel MC (2005) Recent changes in soil chemistry in a forested ecosystem of Southern Québec, Canada. Soil Sci Soc Am J 69:1298–1313

    Article  CAS  Google Scholar 

  • Courty PE, Buée M, Diedhiou AG, Frey-Klett P, Le Tacon F, Rineau F, Turpault MP, Uroz S, Garbaye J (2010) The role of ectomycorrhizal communities in forest ecosystem processes: new perspectives and emerging concepts. Soil Biol Biochem 42:679–698

    Article  CAS  Google Scholar 

  • Darrah PR (1993) The rhizosphere and plant nutrition: a quantitative approach. Plant Soil 155(156):1–20

    Article  Google Scholar 

  • Dieffenbach A, Matzner E (2000) In situ soil solution chemistry in the rhizosphere of mature Norway spruce (Picea abies [L.] Karst.) trees. Plant Soil 222:149–161

    Article  CAS  Google Scholar 

  • Dieffenbach A, Göttlein A, Matzner E (1997) In-situ soil solution chemistry in an acid forest soil as influenced by growing roots of Norway spruce (Picea abies [L.] Karst.). Plant Soil 192:57–61

    Article  CAS  Google Scholar 

  • Espiau P, Peyronel A (1976) L’acidité d’échange dans les sols. Méthode de détermination de l’aluminium échangeable et des protons échangeables. Bull AFES 3:161–175

    Google Scholar 

  • Gbondo-Tugbawa SS, Driscoll CT (2003) Factors controlling long-term changes in soil pools of exchangeable basic cations and stream acid neutralizing capacity in a northern hardwood forest ecosystem. Biogeochemistry 63:161–185

    Article  CAS  Google Scholar 

  • Gobran GR, Clegg S (1996) A conceptual model for nutrient availability in the mineral soil-root system. Can J Soil Sci 76:125–131

    Article  Google Scholar 

  • Gobran GR, Clegg S, Courchesne F (1998) Rhizospheric processes influencing the biogeochemistry of forest ecosystems. Biogeochemistry 42:107–120

    Article  Google Scholar 

  • Grayston SJ, Vaughan D, Jones D (1997) Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Applied Soil Ecology 5:29–56

    Article  Google Scholar 

  • Haines SG, Cleveland G (1981) Seasonal-variation in properties of 5 forest soils in Southwest Georgia. Soil Sci Soc Am J 45:139–143

    Article  CAS  Google Scholar 

  • Hinsinger P, Plassard C, Jaillard B (2006) Rhizosphere: a new frontier for soil biogeochemistry. J Geochem Explor 88:210–213

    Article  CAS  Google Scholar 

  • Hinsinger P, Bengough AG, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152

    Article  CAS  Google Scholar 

  • Johnson DW, Cresser MS, Nilsson SI, Turner J, Ulrich B, Binkley D, Cole DW (1990) Soil changes in forest ecosystems: evidence for and probable causes. Proc Math Roy Soc Edinb 97B:81–116

    Google Scholar 

  • Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163:459–480

    Article  CAS  Google Scholar 

  • Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil-root interface. Plant Soil 321:5–33

    Article  CAS  Google Scholar 

  • Keller CK, O’Brien R, Havig JR, Smith JL, Bormann BT, Wang D (2006) Tree harvest in an experimental sand ecosystem: plant effects on nutrient dynamics and solute generation. Ecosystems 9:634–646

    Article  CAS  Google Scholar 

  • Kelly JM, Mays PA (1999) Nutrient supply changes within a growing season in two deciduous forest soils. Soil Sci Soc Am J 63:226–232

    Article  CAS  Google Scholar 

  • Lambers H, Mougel C, Jaillard B et al (2009) Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective. Plant Soil 231:83–115

    Article  Google Scholar 

  • Maitat O, Boudot JP, Merlet D, Rouiller J (2000) Aluminium chemistry in two contrasted acid forest soils and headwater streams impacted by acid deposition, Vosges mountains, NE France. Water Air Soil Pollut 117:217–243

    Article  CAS  Google Scholar 

  • Mareschal L, Bonnaud P, Turpault MP, Ranger J (2010) Impact of common European tree species on the chemical and physicochemical properties of fine earth: an unusual pattern. Eur J Soil Sci 61:14–23

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, London

    Google Scholar 

  • Meinen C, Hertel D, Leuschner C (2009) Root growth and recovery in temperate broad-leaved forest stands differing in tree species diversity. Ecosystems 12:1103–1116

    Article  Google Scholar 

  • Nielsen KE, Ladekarl UL, Nornberg P (1999) Dynamic soil processes on heathland due to changes in vegetation to oak and Sitka spruce. Forest Ecol Manag 114:107–116

    Article  Google Scholar 

  • Peterson DL, Rolfe GL (1982) Seasonal-variation in nutrients of floodplain and upland forest soils of Central Illinois. Soil Sci Soc Am J 46:1310–1315

    Article  CAS  Google Scholar 

  • Phillips RP, Fahey TJ (2008) The influence of soil fertility on rhizosphere effects in northern hardwood forest soils. Soil Sci Soc Am J 72:453–461

    Article  CAS  Google Scholar 

  • Ranger J, Nys C (1994) The effect of spruce (Picea-abies Karst) on soil development -An analytical and experimental approach. Eur J Soil Sci 45:193–204

    Article  Google Scholar 

  • Ranger J, Marques R, Jussy JH (2001) Forest soil dynamics during stand development assessed by lysimeter and centrifuge solutions. Forest Ecol Manag 144:129–145

    Article  Google Scholar 

  • Ross DS, Matschonat G, Skyllberg U (2008) Cation exchange in forest soils: the need for a new perspective. Eur J Soil Sci 59:1141–1159

    Article  CAS  Google Scholar 

  • Rouiller J, Guillet B, Bruckert S (1980) Cations acides échangeables et acidité de surface. Approche analytique et incidence pédogénétiques. Bull AFES 2:171–175

    Google Scholar 

  • Seddoh FK (1973) Altération des roches cristallines du Morvan (granite, granophyres, rhyolites). Etude minéralogique, géochimique et micromorphologique. Doctoral dissertation, Université de Dijon, France

  • Séguin V, Courchesne F, Cagnon C, Martin RR, Naftel SJ, Skinner W (2005) Mineral weathering in the rhizosphere of forested soils. In: Huang PM, Gobran GR (eds) Biogeochemistry of trace elements in the rhizosphere. Elsevier, Amsterdam, pp 22–55

    Google Scholar 

  • Turpault MP, Uterano C, Boudot JP, Ranger J (2005) Influence of mature Douglas fir roots on the solid soil phase of the rhizosphere and its solution chemistry. Plant Soil 275:327–336

    Article  CAS  Google Scholar 

  • Turpault MP, Gobran GR, Bonnaud P (2007) Temporal variations of rhizosphere and bulk soil chemistry in a Douglas fir stand. Geoderma 137:490–496

    Article  CAS  Google Scholar 

  • Turpault MP, Righi D, Utérano C (2008) Clay minerals: Precise markers of the spatial and temporal variability of the biogeochemical soil environment. Geoderma 147:108–115

    Article  CAS  Google Scholar 

  • Uroz S, Calvaruso C, Turpault MP, Pierrat JC, Mustin C, Frey-Klett P (2007) Effect of the mycorrhizosphere on the genotypic and metabolic diversity of the bacterial communities involved in mineral weathering in a forest soil. Appl Environ Microbiol 73:3019–3027

    Article  PubMed  CAS  Google Scholar 

  • Uroz S, Calvaruso C, Turpault MP, Frey-Klett P (2009) Mineral weathering by bacteria: ecology, actors and mechanisms. Trends Microbiol 17:378–387

    Article  PubMed  CAS  Google Scholar 

  • USDA (1999) Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys, 2nd edn. Agriculture Handbook Number 436. U.S. Gov Print Office, Washington, DC

  • Vestin JLK, Norström SH, Bylund D, Mellander PE, Lundström US (2008) Soil solution and stream water chemistry in a forested catchment I: dynamics. Geoderma 144:256–270

    Article  CAS  Google Scholar 

  • Wang XP, Zabowski D (1998) Nutrient composition of Douglas-fir rhizosphere and bulk soil solutions. Plant Soil 200:13–20

    Article  CAS  Google Scholar 

  • Wang ZY, Gottlein A, Bartonek G (2001) Effects of growing roots of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica L.) on rhizosphere soil solution chemistry. J Plant Nutr Soil Sci-Z Pflanzenernahr Bodenkd 164:35–41

    Article  CAS  Google Scholar 

  • Zeller B, Recous S, Kunze M, Moukoumi J, Colin-Belgrand M, Bienaime S, Ranger J, Dambrine E (2007) Influence of tree species on gross and net N transformations in forest soils. Ann Forest Sci 64:151–158

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Lorraine Region and the ONF (Office National des Forêts). The authors thank METEO FRANCE for the climatic data. The authors thank Dr J.P Boudot for the soil solution analysis, Drs. G. Gobran, J. Ranger, D. Derrien, A. Legout, S. Uroz and P. Frey-Klett for their helpful discussions. The authors also thank B. Simon, E. Zemlic, P. Bonnaud and J. Marchand for their technical help and the analysis, K. Bateman for review of the English language and C. Clément, D. Gelhaye, S. Didier, C. Bach and P. Vion for their help in soil sampling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Pierre Turpault.

Additional information

Responsible Editor: Tim Simon George.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collignon, C., Calvaruso, C. & Turpault, MP. Temporal dynamics of exchangeable K, Ca and Mg in acidic bulk soil and rhizosphere under Norway spruce (Picea abies Karst.) and beech (Fagus sylvatica L.) stands. Plant Soil 349, 355–366 (2011). https://doi.org/10.1007/s11104-011-0881-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-011-0881-0

Keywords

Navigation