Skip to main content
Log in

Soil microbial community responses to the fungal endophyte Neotyphodium in Italian ryegrass

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Cool-season grasses commonly harbor fungal endophytes in their aerial tissues. However the effects of these symbionts on soil microbial communities have rarely been investigated. Our objective was to explore microbial community responses in soils conditioned by plants of the annual grass Lolium multiflorum with contrasting levels of infection with the endophyte Neotyphodium occultans. At the end of the host growing season, we estimated the functional capacity of soil microbial communities (via catabolic response profiles), the contribution of fungi and bacteria to soil activity (via selective inhibition with antibiotics), and the structure of both microbial communities by molecular analyses. Soil conditioning by highly infected plants affected soil catabolic profiles and tended to increase soil fungal activity. We detected a shift in bacterial community structure while no changes were observed for fungi. Soil responses became evident even without changes in host plant biomass or soil organic carbon or total nitrogen content, suggesting that the endophyte modified host rhizodepositions during the conditioning phase. Our results have implications for the understanding of the reciprocal interactions between above and belowground communities, suggesting that plant-soil feedbacks can be mediated by this symbiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

+E:

Lolium multiflorum population highly infected with the endophyte Neotyphodium occultans

−E:

Lolium multiflorum population lowly infected with the endophyte Neotyphodium occultans

CP:

catabolic response profile

SI:

selective inhibition

DGGE:

denaturing gradient gel electrophoresis

RFLP:

restriction fragment length polymorphism

References

  • Anderson JPE, Domsch KH (1978) A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol Biochem 10(3):215–221. doi:10.1016/0038-0717(78)90099-8

    Article  CAS  Google Scholar 

  • Antunes PM, Miller J, Carvalho LM, Klironomos JN, Newman JA (2008) Even after death the endophytic fungus of Schedonorus phoenix reduces the arbuscular mycorrhizas of other plants. Funct Ecol 22:912–918. doi:10.1111/j.1365-2435.2008.01432.x

    Article  Google Scholar 

  • Bacon CW, White JF Jr (1994) Biotechnology of endophytic fungi of grasses. CRC Press, Boca Raton

    Google Scholar 

  • Bardgett RD, Wardle DA, Yeates GW (1998) Linking above-ground and below-ground interactions: how plant responses to foliar herbivory influence soil organisms. Soil Biol Biochem 30(14):1867–1878. doi:10.1016/S0038-0717(98)00069-8

    Article  CAS  Google Scholar 

  • Bush LP, Wilkinson HH, Schardl CL (1997) Bioprotective alkaloids of grass-fungal endophyte symbioses. Plant Physiol 114:1–7. doi:0032-0889/97/114/0001/07

    CAS  PubMed  Google Scholar 

  • Clay K (1993) The ecology and evolution of endophytes. Agric Ecosyst Environ 44(1–4):39–64. doi:10.1016/0167-8809(93)90038-Q

    Article  Google Scholar 

  • Clay K, Schardl C (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat 160(S4):S99–S127. doi:10.1086/342161

    Article  PubMed  Google Scholar 

  • Correa OS, Montecchia MS, Berti MF, Fernández Ferrari MC, Pucheu NL, Kerber NL, García AF (2009) Bacillus amyloliquefaciens BNM122, a potential microbial biocontrol agent applied on soybean seeds, causes a minor impact on rhizosphere and soil microbial communities. Appl Soil Ecol 41(2):185–194. doi:10.1016/j.apsoil.2008.10.007

    Article  Google Scholar 

  • De Deyn GB, Van der Putten WH (2005) Linking aboveground and belowground diversity. Trends Ecol Evol 20(11):625–633. doi:10.1016/j.tree.2005.08.009

    Article  PubMed  Google Scholar 

  • Degens BP, Harris JA (1997) Development of a physiological approach to measuring the catabolic diversity of soil microbial communities. Soil Biol Biochem 29(9–10):1309–1320. doi:10.1016/s0038-0717(97)00076-x

    Article  CAS  Google Scholar 

  • Franzluebbers AJ, Stuedemann JA (2005) Soil carbon and nitrogen pools in response to Tall Fescue endophyte infection, fertilization, and cultivar. Soil Sci Soc Am J 69(2):396–403

    Article  CAS  Google Scholar 

  • Gundel P, Garibaldi L, Tognetti P, Aragón R, Ghersa C, Omacini M (2009) Imperfect vertical transmission of the endophyte Neotyphodium in exotic grasses in grasslands of the Flooding Pampa. Microb Ecol 57(4):740–748. doi:10.1007/s00248-008-9447-y

    Article  PubMed  Google Scholar 

  • Horwath W (2007) Carbon cycling and formation of soil organic matter. In: Paul EA (ed) Soil microbiology, ecology, and biochemistry, 3rd edn. Academic, Amsterdam, pp 303–340

    Google Scholar 

  • InfoStat (2008) InfoStat. 2008 edn. FCA, Universidad Nacional de Córdoba, Argentina

  • Jenkins M, Franzluebbers A, Humayoun S (2006) Assessing short-term responses of prokaryotic communities in bulk and rhizosphere soils to Tall Fescue endophyte infection. Plant Soil 289(1):309–320. doi:10.1007/s11104-006-9141-0

    Article  CAS  Google Scholar 

  • Lemons A, Clay K, Rudgers JA (2005) Connecting plant-microbial interactions above and belowground: a fungal endophyte affects decomposition. Oecologia 145(4):595–604. doi:10.1007/s00442-005-0163-8

    Article  PubMed  Google Scholar 

  • Mack KML, Rudgers JA (2008) Balancing multiple mutualists: asymmetric interactions among plants, arbuscular mycorrhizal fungi, and fungal endophytes. Oikos 117(2):310–320. doi:10.1111/j.2007.0030-1299.15973.x

    Article  Google Scholar 

  • Malinowski DP, Alloush GA, Belesky DP (1998) Evidence for chemical changes on the root surface of Tall Fescue in response to infection with the fungal endophyte Neotyphodium coenophialum. Plant Soil 205(1):1–12

    Article  CAS  Google Scholar 

  • Omacini M, Chaneton EJ, Ghersa CM, Muller CB (2001) Symbiotic fungal endophytes control insect host-parasite interaction webs. Nature 409(6816):78–81. doi:org/10.1038/35051070

    Article  CAS  PubMed  Google Scholar 

  • Omacini M, Chaneton EJ, Ghersa CM, Otero P (2004) Do foliar endophytes affect grass litter decomposition? A microcosm approach using Lolium multiflorum. Oikos 104(3):581–590. doi:10.1111/j.0030-1299.2004.12915.x

    Article  Google Scholar 

  • Omacini M, Chaneton EJ, Ghersa CM (2005) A hierarchical framework for understanding the ecosystem consequences of endophyte-grass symbioses. In: Robert CA, West CP, Spiers DE. (eds) Neothyphodium in cool season grasses, Blackwell Publishing Ltd, pp141–162

  • Omacini M, Eggers T, Bonkowski M, Gange AC, Jones TH (2006) Leaf endophytes affect mycorrhizal status and growth of co-infected and neighbouring plants. Funct Ecol 20(2):226–232. doi:10.1111/j.1365-2435.2006.01099.x

    Article  Google Scholar 

  • Perelman SB, León RJC, Oesterheld M (2001) Cross-scale vegetation patterns of Flooding Pampa grasslands. J Ecol 89(4):562–577

    Article  Google Scholar 

  • R Development Core Team (2007) R: a language and environment for statistical computing. R Foundation for statistical Computing, Vienna, Austria, ISBN 3-900051-07-0, http://www.R-project.org.

  • Ross DJ, Tate KR, Cairns A, Meyrick KF (1980) Influence of storage on soil microbial biomass estimated by three biochemical procedures. Soil Biol Biochem 12(4):369–374. doi:10.1016/0038-0717(80)90012-7

    Article  Google Scholar 

  • Rousk J, Brookes PC, Baath E (2009) Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Appl Environ Microbiol 75(6):1589–1596. doi:10.1128/aem.02775-08

    Article  CAS  PubMed  Google Scholar 

  • Rudgers JA, Clay K (2007) Endophyte symbiosis with tall fescue: how strong are the impacts on communities and ecosystems? Fungal Biol Rev 21(2–3):107–124. doi:10.1016/j.fbr.2007.05.002

    Article  Google Scholar 

  • Rudgers JA, Orr S (2009) Non-native grass alters growth of native tree species via leaf and soil microbes. J Ecol 97(2):247–255. doi:10.1111/j.1365-2745.2008.01478.x

    Article  Google Scholar 

  • Rudgers JA, Holah J, Orr SP, Clay K (2007) Forest succession suppressed by an introduced plant-fungal symbiosis. Ecology 88(1):18–25. doi:10.1890/0012-9658

    Article  PubMed  Google Scholar 

  • Ruxton GD (2006) The unequal variance t-test is an underused alternative to Student’s t-test and the Mann-Whitney U test. Behav Ecol 17(4):688–690. doi:10.1093/beheco/ark016

    Article  Google Scholar 

  • Saikkonen K, Lehtonen P, Helander M, Koricheva J, Faeth SH (2006) Model systems in ecology: dissecting the endophyte-grass literature. Trends Plant Sci 11(9):428–433. doi:10.1016/j.tplants.2006.07.001

    Article  CAS  PubMed  Google Scholar 

  • Schipper LA, Degens BP, Sparling GP, Duncan LC (2001) Changes in microbial heterotrophic diversity along five plant successional sequences. Soil Biol Biochem 33(15):2093–2103. doi:10.1016/s0038-0717(01)00142-0

    Article  CAS  Google Scholar 

  • Schwarzenbach K, Enkerli J, Widmer F (2007) Objective criteria to assess representativity of soil fungal community profiles. J Microbiol Methods 68(2):358–366. doi:10.1016/j.mimet.2006.09.015

    Article  CAS  PubMed  Google Scholar 

  • Smalla K, Oros-Sichler M, Milling A, Heuer H, Baumgarte S, Becker R, Neuber G, Kropf S, Ulrich A, Tebbe CC (2007) Bacterial diversity of soils assessed by DGGE, T-RFLP and SSCP fingerprints of PCR-amplified 16S rRNA gene fragments: do the different methods provide similar results? J Microbiol Methods 69(3):470–479. doi:10.1016/j.mimet.2007.02.014

    Article  CAS  PubMed  Google Scholar 

  • Sneath PH, Sokal RR (1973) Numerical Taxonomy. WH Freeman and Co., San Francisco

  • Stevenson BA, Sparling GP, Schipper LA, Degens BP, Duncan LC (2004) Pasture and forest soil microbial communities show distinct patterns in their catabolic respiration responses at a landscape scale. Soil Biol Biochem 36(1):49–55. doi:10.1016/j.soilbio.2003.08.018

    Article  CAS  Google Scholar 

  • Susyan EA, Ananyeva ND, Blagodatskaya EV (2005) The antibiotic-aided distinguishing of fungal and bacterial substrate-induced respiration in various soil ecosystems. Microbiology 74(3):336–342. doi:10.1007/s11021-005-0072-1

    Article  CAS  Google Scholar 

  • van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11(3):296–310. doi:10.1111/j.1461-0248.2007.01139.x

    Article  PubMed  Google Scholar 

  • van der Putten W, Bardgett R, de Ruiter P, Hol W, Meyer K, Bezemer T, Bradford M, Christensen S, Eppinga M, Fukami T, Hemerik L, Molofsky J, Schädler M, Scherber C, Strauss S, Vos M, Wardle D (2009) Empirical and theoretical challenges in aboveground-belowground ecology. Oecologia 161(1):1–14. doi:10.1007/s00442-009-1351-8

    Article  PubMed  Google Scholar 

  • Van Hecke M, Treonis A, Kaufman J (2005) How does the fungal endophyte Neotyphodium coenophialum affect Tall Fescue (Festuca arundinacea) rhizodeposition and soil microorganisms? Plant Soil 275(1):101–109. doi:10.1007/s11104-005-0380-2

    Article  CAS  Google Scholar 

  • Vila Aiub MM, Martinez Ghersa MA, Ghersa CM (2003) Evolution of herbicide resistance in weeds: vertically transmitted fungal endophytes as genetic entities. Evol Ecol 17(5):441–456. doi:10.1023/B:EVEC.0000005580.19018.fb

    Article  Google Scholar 

  • Wardle DA, Giller KE (1996) The quest for a contemporary ecological dimension to soil biology. Soil Biol Biochem 28(12):1549–1554. doi:003870717/96

    Article  CAS  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setala H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304(5677):1629–1633. doi:10.1126/science.1094875

    Article  CAS  PubMed  Google Scholar 

  • Wood M (2005) Bootstrapped confidence intervals as an approach to statistical inference. Organ Res Meth 8(4):454–470. doi:10.1177/1094428105280059

    Article  Google Scholar 

  • Zak DR, Holmes WE, White DC, Peacock AD, Tilman D (2003) Plant diversity, soil microbial communiites, and ecosystem function: are there any links? Ecology 84(8):2042–2050. doi:10.1890/02-0433

    Article  Google Scholar 

Download references

Acknowledgments

We thank the owners of “Las Chilcas” farm, who kindly allowed us to take the soil used in the experiment and Marcos Texeira by helping us with statistical bootstrap. We are also grateful to Maria Semmartin and the anonymous reviewers who provided very valuable comments on the manuscript. This work was supported by grants from CONICET-ANPCyT (PICT 1728) and the Microbiology Department of Faculty of Agronomy, University of Buenos Aires.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia Casas.

Additional information

Responsible Editor: Gerlinde De Deyn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casas, C., Omacini, M., Montecchia, M.S. et al. Soil microbial community responses to the fungal endophyte Neotyphodium in Italian ryegrass. Plant Soil 340, 347–355 (2011). https://doi.org/10.1007/s11104-010-0607-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-010-0607-8

Keywords

Navigation