Skip to main content

Advertisement

Log in

Phosphorus deficiency is the major limiting factor for wheat on alluvium polluted by the copper mine pyrite tailings: a black box approach

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Failures of tailings dams have degraded large areas of agricultural alluvial soils worldwide, and concomitant soil pollution studies are abundant. Yet, the data on the actual effects of thereby imposed stresses on major crops are scarce. This work analyses the effect of pyrite tailings from a copper mine, deposited over crop fields by long-term flooding, on wheat (Triticum aestivum L.) under field conditions. The major previously reported polluting agents were Cu, As, Zn, Pb and acidity generated by sulphide oxidation. Flexible systematic sampling, based on visual symptoms in wheat, included transects through partially damaged fields (from calcareous to acid soils). Multivariate analysis of soil properties, leaf mineral composition and growth parameters revealed a consistent underlying soil gradient of decreasing available P and increasing Stot. Phosphorus was shown to have the highest unique contribution to predicting wheat yield, consistent correlation with growth and visual symptoms, and concentrations in the range of severe deficiency. In P deficient plants N deficiency, decrease of available micronutrients and increase of As occur irrespectively of their soil concentrations, and the competition with superior “pyrite” weeds increases. Different sorption of P and possible rhizotoxic effects of other pollutants imply that fertilization can hardly be a solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adalsteinsson S (1994) Compensatory root growth in winter wheat: effects of copper exposure on root geometry and nutrient distribution. J Plant Nutr 17:1501–1512

    Article  CAS  Google Scholar 

  • Adriano D, Chlopecka A, Kaplan D, Clijsters H, Vangronsveld J (1997) Soil contamination and remediation: philosophy, science and technology. In: Prost R (ed) Contaminated soils, Proceedings of the International Conference on the Biogeochemistry of Trace Elements, 15–19 May 1995, Paris, France. INRA, Paris, pp 465–504

    Google Scholar 

  • Allen SE (1974) Chemical analysis of ecological materials. Blackwell, Oxford

    Google Scholar 

  • Álvarez-Ayuso E, García-Sánchez A, Querol X, Moyano A (2008) Trace element mobility in soils seven years after the Aznalcóllar mine spill. Chemosphere 73:1240–1246

    Article  PubMed  Google Scholar 

  • Antonovic G (1974) Zemljišta basena Timoka. Centar za Poljoprivredna Istraživanja, Beograd

  • Barrow NJ, Mendoza RE (1990) Equations for describing sigmoid yield responses and their application to some phosphate responses by lupins and by subterranean clover. Nutr Cycl Agroecosys 22:181–188

    Google Scholar 

  • Bergmann W (1992) Nutritional disorders of plants: development, visual and analytical diagnosis. Gustav Fischer, Jena

    Google Scholar 

  • Bergmann W, Neubert P (1976) Pflanzendiagnose und Pflanzenanalyse zur Ermittlung von Ernahrungsstorungen und des Ernahrungszustandes der Kulturpflanzen. Gustav Fischer, Jena

    Google Scholar 

  • Bhadoria P, Steingrobe B, Claassen N, Liebersbach H (2002) Phosphorus efficiency of wheat and sugar beet seedlings grown in soils with mainly calcium, or iron and aluminium phosphate. Plant Soil 246:41–52

    Article  CAS  Google Scholar 

  • Bird G, Brewer P, Macklin M, Balteanu D, Serban M, Driga B, Zaharia S (2008) River system recovery following the Novat-Rosu tailings dam failure, Maramures County, Romania. Appl Geochem 23:3498–3518

    Article  CAS  Google Scholar 

  • Bollons H, Barraclough P (1999) Assessing the phosphorus status of winter wheat crops: inorganic orthophosphate in whole shoots. J Agr Sci 133:285–295

    Article  Google Scholar 

  • Bradshaw A (1997) Restoration of mined lands—using natural processes. Ecol Eng 8:255–269

    Article  Google Scholar 

  • Bray E, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Gruissem W, Buchannan B, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 1158–1249

    Google Scholar 

  • Bray R, Kurtz LT (1945) Determination of total, organic, and available forms of phosphorus in soils. Soil Sci 59:39–46

    Article  CAS  Google Scholar 

  • Brennan RF (1988) Effect of phosphorus deficiency in wheat on the infection of roots by Gaeumannomyces graminis var. tritici. Aust J Agric Res 39:541–546

    Article  Google Scholar 

  • Burgos P, Madejón E, Pérez de Mora A, Cabrera F (2006) Spatial variability of the chemical characteristics of a trace-element-contaminated soil before and after remediation. Geoderma 130:157–175

    Article  CAS  Google Scholar 

  • Chen J, Chen JZ, Tan MZ, Gong ZT (2002) Soil degradation: a global problem endangering sustainable development. J Geog Sci 12:243–252

    Article  CAS  Google Scholar 

  • Clemente R, Walker D, Bernal M (2005) Uptake of heavy metals and As by Brassica juncea grown in a contaminated soil in Azñalcóllar (Spain): the effect of soil amendments. Environ Pollut 138:46–58

    Article  CAS  PubMed  Google Scholar 

  • de Groot C, Marcelis L, van den Boogaard R, Kaiser W, Lambers H (2003) Interaction of nitrogen and phosphorus nutrition in determining growth. Plant Soil 248:257–268

    Article  Google Scholar 

  • Del Rio M, Font R, Almela C, Velez D, Montoro R, De Haro BA (2002) Heavy metals and arsenic uptake by wild vegetation in the Guadiamar river area after the toxic spill of the Azñalcóllar mine. J Biotechnol 98:125–137

    Article  PubMed  Google Scholar 

  • Domínguez M, Marañón T, Murillo JM, Schulin R, Robinson B (2008) Trace element accumulation in woody plants of the Guadiamar Valley, SW Spain: a large-scale phytomanagement case study. Environ Pollut 152:50–59

    Article  PubMed  Google Scholar 

  • Domínguez M, Marañón T, Murillo JM, Schulin R, Robinson B (2010) Nutritional status of mediterranean trees growing in a contaminated and remediated area. Water Air Soil Poll 205:305–321

    Article  Google Scholar 

  • Egner H, Riehm H, Domingo WR (1960) Untersuchungen über die chemische Bodenanalyse als Grundlage für die Beurteilung des Nährstoffzustandes der Böden. II. Chemische Extraktionsmethoden zur Phosphor und Kalium-bestimmung. K. Lantbrukshoegsk. Ann 26:199–215

    CAS  Google Scholar 

  • Elliott D, Reuter DJ, Reddy GD, Abbott R (1997a) Phosphorus nutrition of spring wheat (Triticum aestivum L.). 1. Effects of phosphorus supply on plant symptoms, yield, components of yield, and plant phosphorus uptake. Aust J Agric Res 48:855–868

    Article  CAS  Google Scholar 

  • Elliott D, Reuter DJ, Reddy GD, Abbott R (1997b) Phosphorus nutrition of spring wheat (Triticum aestivum L.). 3. Effects of plant nitrogen status and genotype on the calibration of plant tests for diagnosing phosphorus deficiency. Aust J Agric Res 48:883–898

    Article  CAS  Google Scholar 

  • Gallart F, Benito G, Martín-Vide J, Benito A, Prió J, Regüés D (1999) Fluvial geomorphology and hydrology in the dispersal and fate of pyrite mud particles released by the Azñalcóllar mine tailings spill. Sci Total Environ 242:13–26

    Article  CAS  Google Scholar 

  • Hüttl RH, Weber E (2001) Forest ecosystem development in post-mining landscapes: a case study of the Lusatian lignite district. Naturwissenschaften 88:322–329

    Article  PubMed  Google Scholar 

  • Knowles F, Watkin JE (1931) The assimilation and translocation of plant nutrients in wheat during growth. J Agri Sci 21:612–637

    Article  CAS  Google Scholar 

  • López-Pamo E, Barettino D, Antón-Pacheco C, Ortiz G, Arránz J, Gumiel J, Martínez-Pledel B, Aparicio M, Montouto O (1999) The extent of the Aznalcοllar pyritic sludge spill and its effects on soils. Sci Total Environ 242:57–88

    Article  PubMed  Google Scholar 

  • Macklin MG, Brewer PA, Hudson-Edwards KA, Bird G, Coulthard TJ, Dennis IA, Lechler PJ, Miller JR, Turner JN (2006) A geomorphological approach to the management of rivers contaminated by metal mining. Geomorphology 79:423–447

    Article  Google Scholar 

  • Madejón P, Marañón T, Murillo JM, Robinson B (2004) White poplar (Populus alba) as a biomonitor of trace elements in contaminated riparian forests. Environ Pollut 132:145–155

    Article  PubMed  Google Scholar 

  • Madejón P, Murillo JM, Marañón T, Cabrera F, Lopez R (2002) Bioaccumulation of As, Cd, Cu, Fe and Pb in wild grasses affected by the Azñalcóllar mine spill (SW Spain). Sci Total Environ 290:105–120

    Article  PubMed  Google Scholar 

  • Madejón P, Murillo JM, Marañón T, Cabrera F, Soriano M (2003) Trace element and nutrient accumulation in sunflower plants two years after the Azñalcóllar mine spill. Sci Total Environ 307:239–257

    Article  PubMed  Google Scholar 

  • Madejón P, Murillo JM, Marañón T, Lepp NW (2007) Factors affecting accumulation of thallium and other trace elements in two wild Brassicaceae spontaneously growing on soils contaminated by tailings dam waste. Chemosphere 67:20–28

    Article  PubMed  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, London

    Google Scholar 

  • Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol 154:29–43

    Article  CAS  Google Scholar 

  • Mortvedt JJ, Cox FR, Shuman LM, Welch RM (1991) Micronutrients in agriculture. SSSA, Madison

    Google Scholar 

  • Murillo JM, Marañón T, Cabrera F, López R (1999) Accumulation of heavy metals in sunflower and sorghum plants affected by the Guadiamar spill. Sci Total Environ 242:281–292

    Article  CAS  PubMed  Google Scholar 

  • Naidu R, Smith E, Owens G, Bhattacharya P, Nadebaum P (2006) Managing arsenic in the environment—from soil to human. CSIRO, Melbourne

    Google Scholar 

  • Néel C, Bril H, Courtin-Nomade A, Dutreuil JP (2003) Factors affecting natural development of soil on 35-year-old sulphide-rich mine tailings. Geoderma 111:1–20

    Article  Google Scholar 

  • Pearse S, Veneklaas E, Cawthray G, Bolland M, Lambers H (2007) Carboxylate composition of root exudates does not relate consistently to a crop species’ ability to use phosphorus from aluminium, iron or calcium phosphate sources. New Phytol 173:181–190

    Article  CAS  PubMed  Google Scholar 

  • Pigna M, Cozzolino V, Violante A, Meharg A (2009) Influence of phosphate on the arsenic uptake by wheat (Triticum durum L.) irrigated with arsenic solutions at three different concentrations. Water Air Soil Poll 197:372–380

    Article  Google Scholar 

  • Rerkasem B, Jamjod S (2004) Boron deficiency in wheat: a review. Field Crop Res 89:173–186

    Article  Google Scholar 

  • Rose T, Hardiputra B, Rengel Z (2010) Wheat, canola and grain legume access to soil phosphorus fractions differs in soils with contrasting phosphorus dynamics. Plant Soil 326:159–170

    Article  CAS  Google Scholar 

  • Sah R, Mikkelsen D (1986) Transformations of inorganic phosphorus during the flooding and draining cycles of soil. Soil Sci Soc Am J 50:62–67

    Article  CAS  Google Scholar 

  • Smartt P (1978) Sampling for vegetation survey: a flexible systematic model for sample location. J Biogeogr 5:43–56

    Article  Google Scholar 

  • Thompson J, Proctor J (1983) Vegetation and soil factors on a heavy metal mine spoil heap. New Phytol 94:297–308

    Article  Google Scholar 

  • Vrbnicanin S, Kojic M (2002) Weed vegetation in small grains crops in lowland and mountainous areas of Central Serbia and its syntaxonomic status. Acta Herbol 11:33–42

    Google Scholar 

  • Walker DJ, Clemente R, Bernal M (2004) Contrasting effects of manure and compost on soil pH, heavy metal availability and growth of Chenopodium album L. in a soil contaminated by pyritic mine waste. Chemosphere 57:215–224

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Duan G (2009) Effect of external and internal phosphate status on arsenic toxicity and accumulation in rice seedlings. J Environ Sci 21:346–351

    Article  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Weiss D, Carbiener R, Trémollères M (1991) Biodisponibilité comparée du phosphore en fonction des substrats et de la fréquence des inondations dans trois forêts alluviales rhénanes de la plaine d’Alsace. Cr Acad Sci III-Vie 313:245–251

    CAS  Google Scholar 

  • Wiegleb G, Felinks B (2001) Primary succession in post-mining landscapes of Lower Lusatia—chance or necessity. Ecol Eng 17:199–217

    Article  Google Scholar 

  • Wolkersdorfer C, Bowel R (2005) Contemporary reviews of mine water studies in Europe: part 2. Mine Water Environ 24:2–37

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work is dedicated to the memory of Miodrag Jakovljević, professor of the Belgrade University. The research was supported by the Serbian Ministry of Science and Technology (grant no. 153002). We thank Ernest A. Kirkby (University of Leeds, UK) for improving the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Nikolic.

Additional information

Responsible Editor: Henk Schat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikolic, N., Kostic, L., Djordjevic, A. et al. Phosphorus deficiency is the major limiting factor for wheat on alluvium polluted by the copper mine pyrite tailings: a black box approach. Plant Soil 339, 485–498 (2011). https://doi.org/10.1007/s11104-010-0605-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-010-0605-x

Keywords

Navigation