Skip to main content

Advertisement

Log in

Improving NaCl resistance of red-osier dogwood: role of CaCl2 and CaSO4

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

The influence of Ca2+ salts on the resistance of red-osier dogwood (Cornus sericea) seedlings to salinity was investigated. Red-osier dogwood seedlings were exposed to 5 and 10 mM of CaCl2 or CaSO4 in the presence or absence of 50 mM NaCl for 40 days in a controlled environment. Seedlings exposed to CaCl2 and CaSO4 recovered from NaCl-induced transpiration reduction after 20 days at a concentration of 10 mM and after 30 days at a concentration of 5 mM; while in absence of additional Ca2+, the seedlings recovered only after 40 days. Addition of 10 mM Ca2+ to NaCl treatment also limited the accumulation of proline in leaf tissues and caused an increase in leaf and lateral shoot K+ content. These results suggest that 10 mM Ca2+ could alleviate, at least in part, the osmotic effect of NaCl on red-osier dogwood via control of stomatal closure. On the other hand, ion analysis showed that Ca2+ addition was able to reduce the NaCl-induced Na+ concentration only in stem tissues suggesting that Ca2+ had only a limited effect on the ionic stress. The present study also showed an unexpected NaCl-induced increase in Ca2+ content of leaves, lateral shoots and stems that was not observed in our previous hydroponics experiments and seems to be more characteristic of plants growing on sandy soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207 doi:10.1007/BF00018060

    Article  CAS  Google Scholar 

  • Caines AM, Shennan C (1999) Interactive effects of Ca2+ and NaCl salinity on the growth of two tomato genotypes differing in Ca2+ use efficiency. Plant Physiol Biochem 37:569–576

    CAS  Google Scholar 

  • Colmer TD, Fan TWM, Higashi RM, Läuchli A (1996) Interactive effects of Ca2+ and NaCl salinity on the ionic relations and proline accumulation in the primary root tip of Sorghum bicolor. Physiol Plant 97:421–424 doi:10.1111/j.1399-3054.1996.tb00498.x

    Article  CAS  Google Scholar 

  • Cramer GR, Läuchli A, Polito VS (1985) Displacement of Ca2+ by Na+ from the plasmalemma of root cells. A primary response to salt stress? Plant Physiol 79:207–211

    Article  PubMed  CAS  Google Scholar 

  • Cramer GR, Lynch J, Läuchli A, Epstein E (1987) Influx of Na+, K+, and Ca2+ into roots of salt-stressed cotton seedlings: effects of supplemental Ca2+. Plant Physiol 83:510–516

    Article  PubMed  CAS  Google Scholar 

  • Cummings WR, Kende H, Raschke K (1971) Specificity and reversibility of the rapid stomatal response to abscisic acid. Planta 99:347–351 doi:10.1007/BF00385826

    Article  Google Scholar 

  • Girija C, Smith BN, Swamy PM (2002) Interactive effects of sodium chloride and calcium chloride on the accumulation of proline and glycinebetaine in peanut (Arachis hypogaea L.). Environ Exp Bot 47:1–10 doi:10.1016/S0098-8472(01)00096-X

    Article  CAS  Google Scholar 

  • Gómez-Cadenas A, Tadeo FR, Primo-Millo E, Talon M (1998) Involvement of abscisic acid and ethylene in the responses of citrus seedlings to salt shock. Physiol Plant 103:475–484 doi:10.1034/j.1399-3054.1998.1030405.x

    Article  Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in non-halophytes. Annu Rev Plant Physiol 31:149–190 doi:10.1146/annurev.pp.31.060180.001053

    Article  CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499 doi:10.1146/annurev.arplant.51.1.463

    Article  PubMed  CAS  Google Scholar 

  • Hoffman GJ, Catlin PB, Mead RM, Johnson RS, Francois LE, Goldhamer D (1989) Yield and foliar injury responses of mature plum trees to salinity. Irrig Sci 10:215–229 doi:10.1007/BF00257954

    Article  Google Scholar 

  • Husain S, von Caemmerer S, Munns R (2004) Control of salt transport from roots to shoots of wheat in saline soil. Funct Plant Biol 31:1115–1126 doi:10.1071/FP04078

    Article  CAS  Google Scholar 

  • Joshi S (1987) Effect of soil salinity on nitrogen metabolism in Cajanus cajan L. Indian J Plant Physiol 30:223–225

    CAS  Google Scholar 

  • Klein A, Itai C (1989) Is proline involved in stomata regulation of Commelina communis L plants recovering from salinity stress? Physiol Plant 75:399–404 doi:10.1111/j.1399-3054.1989.tb04645.x

    Article  CAS  Google Scholar 

  • Kurth E, Cramer GR, Läuchli A, Epstein E (1986) Effects of NaCl and CaCl2 on cell enlargement and cell production in cotton roots. Plant Physiol 82:1102–1106

    Article  PubMed  CAS  Google Scholar 

  • Läuchli A (1990) Calcium, salinity and the plasma membrane. In: Leonard RT, Hepler PK (eds) Calcium in plant growth. The American Society of Plant Physiologists, Rockville, MD, pp 26–35

    Google Scholar 

  • Leung J, Bouvier-Durand M, Morris PC, Guerrier D, Chefdor F, Giraudat J (1994) Arabidopsis ABA response gene ABI1: features of a calcium-modulated protein phosphatase. Science 264:1448–1452 doi:10.1126/science.7910981

    Article  PubMed  CAS  Google Scholar 

  • Maas EV (1993) Salinity and citriculture. Tree Physiol 12:196–216

    Google Scholar 

  • Nilsen ET, Orcutt DM (1996) Salinity stress. In: The physiology of plants under stress. Wiley, New York, pp 177–235

    Google Scholar 

  • Nilson SE, Assmann SM (2007) The control of transpiration. Insights from Arabidopsis. Plant Physiol 143:19–27 doi:10.1104/pp.106.093161

    Article  PubMed  CAS  Google Scholar 

  • Niu X, Bressan RA, Hasegawa PM, Pardo JM (1995) Ion homeostasis in NaCl stress environments. Plant Physiol 109:735–742

    PubMed  CAS  Google Scholar 

  • Perera LKRR, Mansfield TA, Malloch AJC (1994) Stomatal responses to sodium-ions in Aster tripolium: a new hypothesis to explain salinity regulation in above-ground tissues. Plant Cell Environ 17:335–340 doi:10.1111/j.1365-3040.1994.tb00300.x

    Article  CAS  Google Scholar 

  • Perera LKRR, Robinson MF, Mansfield TA (1995) Responses of the stomata of Aster tripolium to calcium and sodium ions in relation to salinity tolerance. J Exp Bot 46:623–629 doi:10.1093/jxb/46.6.623

    Article  CAS  Google Scholar 

  • Raghavendra AS, Bhaskar Reddy K (1987) Action of proline on stomata differs from that of abscissic acid, G-substances or methyl jasmonate. Plant Physiol 83:732–734

    Article  PubMed  CAS  Google Scholar 

  • Rai VK (2002) Role of amino acids in plant responses to stresses. Biol Plant 45:481–487 doi:10.1023/A:1022308229759

    Article  CAS  Google Scholar 

  • Ramoliya PJ, Patel HM, Joshi JB, Pandey AN (2006) Effect of salinization of soil on growth and nutrient accumulation in seedlings of Prosopis cineraria. J Plant Nutr 29:283–303 doi:10.1080/01904160500476806

    Article  CAS  Google Scholar 

  • Renault S (2005) Response of red-osier dogwood (Cornus stolonifera) seedlings to sodium sulphate salinity: effects of supplemental calcium. Physiol Plant 123:75–81 doi:10.1111/j.1399-3054.2005.00444.x

    Article  CAS  Google Scholar 

  • Renault S, Croser C, Franklin JA, Zwiazek JJ (2001) Effects of NaCl and Na2SO4 on red-osier dogwood (Cornus stolonifera Michx) seedlings. Plant Soil 233:261–268 doi:10.1023/A:1010512021353

    Article  CAS  Google Scholar 

  • Rengel Z (1992) The role of calcium in salt toxicity. Plant Cell Environ 15:625–632 doi:10.1111/j.1365-3040.1992.tb01004.x

    Article  CAS  Google Scholar 

  • Rieger M, Litvin P (1998) Ion selective electrodes for measurement of Na and Cl salinity experiments. J Plant Nutr 21:205–215

    Article  CAS  Google Scholar 

  • Rout NP, Shaw BP (2001) Salt tolerance in aquatic macrophytes: ionic relation and interaction. Biol Plant 44:95–99 doi:10.1023/A:1017978506585

    Article  CAS  Google Scholar 

  • Shabala S, Demidchik V, Shabala L, Cuin TA, Smith SJ, Miller AJ et al (2006) Extracellular Ca2+ ameliorates NaCl-induced K+ loss from Arabidopsis root and leaf cells by controlling plasma membrane K+ permeable channels. Plant Physiol 141:1653–1665 doi:10.1104/pp.106.082388

    Article  PubMed  CAS  Google Scholar 

  • Stassart JM, Neirinckx L, Dejaegere R (1981) The interaction between monovalent cations and calcium during their adsorption on isolated cell walls and absorption by intact barley roots. Ann Bot (Lond) 47:647–652

    CAS  Google Scholar 

  • Strogonov BS (1974) Structure and function of plant cells in saline habitats: new trends in the study of salt tolerance. Wiley, New York (translated from the Russian edition by Gollek B)

    Google Scholar 

  • Thompson M, Walsh JN (1983) A handbook of inductively coupled plasma spectrometry. Blakie and Son, Glasgow, Scotland

    Google Scholar 

  • Volkmar KM, Hu Y, Steppuhn H (1998) Physiological responses of plants to salinity: a review. Can J Plant Sci 78:19–27

    CAS  Google Scholar 

  • Warncke DD, Reid TC, Hausbeck MK (2002) Sodium chloride and lime effects on soil cations and elemental composition of asparagus fern. Commun Soil Sci Plant Anal 33:3075–3084 doi:10.1081/CSS-120014507

    Article  CAS  Google Scholar 

  • Wu Y, Sanchez JP, Lopez-Molina L, Himmelbach A, Grill E, Chua NH (2003) The abi1–1 mutation blocks ABA signaling downstream of cADPR action. Plant J 34:307–315 doi:10.1046/j.1365-313X.2003.01721.x

    Article  PubMed  CAS  Google Scholar 

  • Yokoi S, Bressan RA, Hasegawa PM (2002) Salt stress tolerance in plants. JIRCAS (Japan International Research Centre for Agricultural Sciences) working report, pp 25–33

Download references

Acknowledgment

Research funds for the project were provided to S.R. by the Natural Sciences and Engineering Research Council of Canada. Seeds were provided by Martin Fung (Syncrude Canada Ltd.). We would like to thank Scott Green and Karen Kivinen for technical assistance. Thanks to Drs. J. Franklin, D. Weihrauch, M. Sumner and the anonymous reviewers for critical reviews of the manuscript and for providing helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvie Renault.

Additional information

Responsible Editor: John McPherson Cheeseman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Renault, S., Affifi, M. Improving NaCl resistance of red-osier dogwood: role of CaCl2 and CaSO4 . Plant Soil 315, 123–133 (2009). https://doi.org/10.1007/s11104-008-9737-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-008-9737-7

Keywords

Navigation