Skip to main content
Log in

Elemental 2-D mapping and changes in leaf iron and chlorophyll in response to iron re-supply in iron-deficient GF 677 peach-almond hybrid

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Iron is an essential micronutrient for plant growth and development, involved in key cellular processes. However, the distribution of Fe in plant tissues is still not well known. In the so-called Fe chlorosis paradox, leaves of fruit trees grown in the field usually have high concentrations of Fe but still are Fe-deficient. Leaves of the Prunus rootstock GF 677 (P. dulcis × P. persica) grown in hydroponics have been used to carry out two-dimensional (2-D) nutrient mapping by synchrotron radiation-induced X-ray fluorescence. Iron-deficient leaves accumulated more Fe in the midrib and veins, with Fe concentration being markedly lower in mesophyll leaf areas. The effects of Fe deficiency and Fe re-supply on leaf chlorophyll concentration and on the distribution of Fe and other nutrients within different plant tissues have been investigated in the same plants. After Fe re-supply, leaf Fe concentrations increased largely in all leaf types. However, whereas re-greening was almost completely achieved in apical leaves, in some expanded leaves the increase in chlorophyll concentration was only moderate. Therefore, after Fe re-supply Fe-deficient expanded leaves of the Prunus rootstock GF 677 had significant increases in Fe concentration but were still chlorotic. This is similar to what occurs in leaves of peach trees in field conditions, opening the possibility that this system could be used as a model to study the Fe chlorosis paradox.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Chl:

chlorophyll

EDTA:

ethylenediaminetetracetic acid

DW:

dry weight

μ-SRXF:

synchrotron radiation-induced X-ray fluorescence

References

  • Abadía J, Abadía A (1993) Iron and plant pigments. In: Barton LL, Hemming BC (eds) Iron chelation in plants and soil microorganisms. Academic, San Diego, pp 327–343

    Google Scholar 

  • Alcántara E, Romera FJ, Cañete M, de la Guardia MD (2000) Effects of bicarbonate and iron supply on Fe(III) reducing capacity of roots and leaf chlorosis of the susceptible peach rootstock “Nemaguard”. J Plant Nutr 23:1607–1617

    Article  Google Scholar 

  • Álvarez-Fernández A, Abadía J, Abadía A (2006) Iron deficiency, fruit yield and fruit quality. In: Barton LL, Abadía J (eds) Iron Nutrition in Plants and Rizospheric Microorganisms. Springer, Dordrecht, pp 85–101

    Chapter  Google Scholar 

  • Andaluz S (2005) Estudio de los cambios inducidos por la deficiencia de hierro en el proteoma de las plantas. PhD thesis. University of Zaragoza, Zaragoza

  • A.O.A.C. (1990) Official methods of analysis of the association of official analytical chemists. In: Hedrich K (ed) Academic, Washington DC, p 1141

  • Becker R, Fritz E, Manteuffel R (1995) Subcellular localization and characterization of excessive iron in the nicotianamine-less tomato mutant chloronerva. Plant Physiol 108:269–275

    PubMed  CAS  Google Scholar 

  • Bienfait HF, Bino RJ, van der Bliek AM, Duivenvoorden JF, Fontaine JM (1983) Characterization of ferric reducing activity in roots of Fe-deficient Phaseolus vulgaris. Physiol Plant 59:196–202

    Article  CAS  Google Scholar 

  • Bienfait HF, Van der Briel W, Mesland-Mul NT (1985) Free space iron pools in roots. Generation and mobilization. Plant Physiol 78:596–600

    Article  PubMed  CAS  Google Scholar 

  • Bohórquez JM, Romera FJ, Alcántara E (2001) Effect of Fe3+, Zn2+and Mn2+on ferric reducing capacity and regreening process of the peach rootstock Nemaguard (Prunus persica (L.) Batsch). Plant Soil 237:157–163

    Article  Google Scholar 

  • Chaney RL, Brown JC, Tiffin LO (1972) Obligatory reduction of ferric chelates in iron uptake by soybeans. Plant Physiol 50:208–213

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Shi J, Tian G, Zheng S, Lin Q (2004) Fe deficiency induces Cu uptake and accumulation in Commelina communis. Plant Sci 166:1371–1377

    Article  CAS  Google Scholar 

  • Cinelli F, Tamantini I, Iacona C (2004) Nutritional (Fe-Mn) interactions in ‘Big Top’ peach plants as influenced by the rootstock and by the soil CaCO3 concentration. Soil Sci Plant Nutr 50:1097–1102

    CAS  Google Scholar 

  • Curie C, Briat J-F (2003) Iron transport and signaling in plants. Annu Rev Plant Biol 54:183–206

    Article  PubMed  CAS  Google Scholar 

  • Fodor F, Gáspár L, Morales F, Gogorcena Y, Lucena JJ, Cseh E, Kröpfl K, Abadía J, Sárvári É (2005) Effects of two iron sources on iron and cadmium allocation in poplar (Populus alba) plants exposed to cadmium. Tree Physiol 25:1173–1180

    PubMed  CAS  Google Scholar 

  • Gogorcena Y, Abadía J, Abadía A (2000) Induction of in vivo root ferric chelate reductase activity in fruit tree rootstock. J Plant Nutr 23:9–21

    Article  CAS  Google Scholar 

  • Gogorcena Y, Abadía J, Abadía A (2004) A new technique for screening iron-efficient genotypes in peach rootstocks: elicitation of root ferric chelate reductase by manipulation of external iron concentrations. J Plant Nutr 27:1701–1715

    Article  CAS  Google Scholar 

  • González-Vallejo EB, Morales F, Cistué L, Abadía A, Abadía J (2000) Iron deficiency decreases the Fe(III)-chelate reducing activity of leaf protoplasts. Plant Physiol 122:337–344

    Article  PubMed  Google Scholar 

  • Gruber B, Kosegarten H (2002) Depressed growth of non-chlorotic vine grown in calcareous soil is an iron deficiency symptom prior to leaf chlorosis. J Plant Nutr Soil Sci 165:111–117

    Article  CAS  Google Scholar 

  • Hell R, Stephan UW (2003) Iron uptake, trafficking and homeostasis in plants. Planta 216:541–551

    PubMed  CAS  Google Scholar 

  • Hüve K, Remus R, Lüttschwager D, Merbach W (2003) Transport of foliar applied iron (59Fe) in Vicia faba. J Plant Nutr 26:2231–2242

    Article  CAS  Google Scholar 

  • Iglesias I, Monserrat R, Carbó J, Bonany J, Casals M (2004) Evaluation of agronomical performance of several peach rootstocks in Lleida and Girona (Catalonia, NE-Spain). Acta Hortic 658:341–348

    Google Scholar 

  • Isaure M-P, Fraysse A, Devès G, le Lay P, Fayard B, Susini J, Bourguignon J, Ortega R (2006) Micro-chemical imaging of cesium distribution in Arabidopsis thaliana plant and its interaction with potassium and essential trace elements. Biochimie 88:1583–1590

    Article  PubMed  CAS  Google Scholar 

  • Ishimaru Y, Suzuki M, Tsukamoto T, Suzuki K, Nakazono M, Kobayashi T, Wada Y, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2006) Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+. Plant J 45:335–346

    Article  PubMed  CAS  Google Scholar 

  • Jiménez S (2006) Selección de patrones frutales de hueso tolerantes a la clorosis férrica. Aspectos nutricionales y metabólicos. PhD thesis, University of Zaragoza, Zaragoza

  • Jiménez S, Gogorcena Y, Hevin C, Rombolà AD, Ollat N (2007) Nitrogen nutrition influences some biochemical responses to iron deficiency in tolerant and sensitive genotypes of Vitis. Plant Soil 290:343–355

    Article  CAS  Google Scholar 

  • Jiménez S, Pinochet J, Abadía A, Moreno MA, Gogorcena Y (2008) Tolerance response to iron chlorosis of Prunus selections as rootstocks. HortScience 43:304–309

    Google Scholar 

  • Kim SA, Guerinot ML (2007) Mining iron: iron uptake and transport in plants. FEBS Lett 581:2273–2280

    Article  PubMed  CAS  Google Scholar 

  • Kim SA, Punshon T, Lanzirotti A, Li L, Alonso JM, Ecker JR, Kaplan J, Guerinot ML (2006) Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1. Science 314:1295–1298

    Article  PubMed  CAS  Google Scholar 

  • Kosegarten H, Koyro H-W (2001) Apoplastic accumulation of iron in the epidermis of maize (Zea mays) roots grown in calcareous soil. Physiol Plant 113:515–522

    Article  CAS  Google Scholar 

  • Krüger C, Berkowitz O, Stephan UW, Hell R (2002) A metal-binding member of the late embryogenesis abundant protein family transports iron in the phloem of Ricinus communis L. J Biol Chem 277:25062–25069

    Article  PubMed  CAS  Google Scholar 

  • Lambert J, Lampen P, von Bohlen A, Hergenröder R (2006) Two- and three-dimensional mapping of the iron distribution in the apoplasmic fluid of plant leaf tissue by means of magnetic resonance imaging. Anal Bioanal Chem 384:231–236

    Article  PubMed  CAS  Google Scholar 

  • Larbi A, Morales F, López-Millán AF, Gogorcena Y, Abadía A, Moog PR, Abadía J (2001) Technical advance: reduction of Fe(III)-chelates by mesophyll leaf disks of sugar beet. Multi-component origin and effects of Fe deficiency. Plant Cell Physiol 42:94–105

    Article  PubMed  CAS  Google Scholar 

  • Liu DH, Adler K, Stephan UW (1998) Iron-containing particles accumulate in organelles and vacuoles of leaf and root cells in the nicotianamine-free tomato mutant chloronerva. Protoplasma 201:213–220

    Article  CAS  Google Scholar 

  • López-Millán A-F, Morales F, Abadía A, Abadía J (2000) Effects of iron deficiency on the composition of the leaf apoplastic fluid and xylem sap in sugar beet. Implications for iron and carbon transport. Plant Physiol 124:873–884

    Article  PubMed  Google Scholar 

  • López-Millán AF, Morales F, Abadía A, Abadía J (2001) Iron deficiency-associated changes in the composition of the leaf apoplastic fluid from field-grown pear (Pyrus communis L.) trees. J Exp Bot 52:1489–1498

    Article  PubMed  Google Scholar 

  • Marmiroli N, Maestri E, Antonioli G, Conte C, Mociardini P, Marmiroli M, Mucchino C (1999) Application of synchrotron radiation X-ray fluorescence (μ-SRXF) and X-ray microanalysis (SEM/EDX) for the quantitative and qualitative evaluation of trace element accumulation in woody plants. Int J Phytoremediat 1:169–187

    Article  CAS  Google Scholar 

  • Marschner H (1991) Symposium summary and future research areas. In: Chen Y, Hadar Y (eds) Iron Nutrition and Interactions in Plants. Kluwer, Dordrecht, pp 365–372

    Google Scholar 

  • McNear DH Jr, Peltier E, Everhart J, Chaney RL, Sutton S, Newville M, Rivers M, Sparks DL (2005) Application of quantitative fluorescence and absorption-edge computed microtomography to image metal compartmentalization in Alyssum murale. Environ Sci Technol 39:2210–2218

    Article  PubMed  CAS  Google Scholar 

  • Mengel K (1994) Iron availability in plant tissues—iron chlorosis on calcareous soils. Plant Soil 165:275–283

    Article  CAS  Google Scholar 

  • Molassiotis A, Tanou G, Diamantidis G, Patakas A, Therios I (2006) Effects of 4-month Fe deficiency exposure on Fe reduction mechanism, photosynthetic gas exchange, chlorophyll fluorescence and antioxidant defense in two peach rootstocks differing in Fe deficiency tolerance. J Plant Physiol 163:176–185

    Article  PubMed  CAS  Google Scholar 

  • Morales F, Grasa R, Abadía A, Abadía J (1998) Iron chlorosis paradox in fruit trees. J Plant Nutr 21:815–825

    Article  CAS  Google Scholar 

  • Mukherjee I, Campbell NH, Ash JS, Connolly EL (2006) Expression profiling of the Arabidopsis ferric chelate reductase (FRO) gene family reveals differential regulation by iron and copper. Planta 223:1178–1190

    Article  PubMed  CAS  Google Scholar 

  • Nikolic M, Römheld V (2003) Nitrate does not result in iron inactivation in the apoplast of sunflower leaves. Plant Physiol 132:1303–1314

    Article  PubMed  CAS  Google Scholar 

  • Punshon T, Lanzirotti A, Harper S, Bertsch PM, Burger J (2005) Distribution and speciation of metals in annual rings of black willow. J Environ Qual 34:1165–1173

    Article  PubMed  CAS  Google Scholar 

  • Reid RJ (2001) Mechanisms of micronutrient uptake in plants. Aust J Plant Physiol 28:659–666

    CAS  Google Scholar 

  • Rodríguez N, Menéndez N, Tornero J, Amils R, de la Fuente V (2005) Internal iron biomineralization in Imperata cylindrica, a perennial grass: chemical composition, speciation and plant localization. New Phytol 165:781–789

    Article  PubMed  CAS  Google Scholar 

  • Romera FJ, Alcántara E, de la Guardia MD (1991a) Characterization of the tolerance to iron chlorosis in different peach rootstocks grown in nutrient solution. I. Effect of bicarbonate and phosphate. Plant Soil 130:115–119

    Article  CAS  Google Scholar 

  • Romera FJ, Alcántara E, de la Guardia MD (1991b) Characterization of the tolerance to iron chlorosis in different peach rootstocks grown in nutrient solution. II. Iron-stress response mechanism. Plant Soil 130:121–125

    Article  CAS  Google Scholar 

  • Römheld V (2000) The chlorosis paradox: Fe inactivation in leaves as a secondary event in Fe deficiency chlorosis. J Plant Nutr 23:1629–1643

    Article  Google Scholar 

  • Sanz M, Cavero J, Abadía J (1992) Iron chlorosis in the Ebro river basin, Spain. J Plant Nutr 15:1971–1981

    Article  CAS  Google Scholar 

  • Shi Y, Byrne DH, Reed DW, Loeppert RH (1993) Iron chlorosis development and growth response of peach rootstocks to bicarbonate. J Plant Nutr 16:1039–1046

    Article  CAS  Google Scholar 

  • Stangoulis JCR, Huynh B-L, Welch RM, Choi E-Y, Graham RD (2007) Quantitative trait loci for phytate in rice grain and their relationship with grain micronutrient content. Euphytica 154:289–294

    Article  Google Scholar 

  • Takahashi M, Terada Y, Nakai I, Nakanishi H, Yoshimura E, Mori S, Nishizawa NK (2003) Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. Plant Cell 15:1263–1280

    Article  PubMed  CAS  Google Scholar 

  • Zarrouk O, Gogorcena Y, Gómez-Aparisi J, Betrán JA, Moreno MA (2005) Influence of almond x peach hybrids rootstocks on flower and leaf mineral concentration, yield and vigour of two peach cultivars. Sci Hortic 106:502–514

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supported by grants from the Spanish MEC (AGL2005-05533 and AGL2006-1416) co-financed by FEDER, PETRI (PTR1995-0580) and DGA (A44 and A03). S. Jiménez was supported by an I3P-CSIC predoctoral fellowship (cofinanced by FSE). We gratefully acknowledge P. Chevallier and E. Foy for their help during the work with μ-SRXF, R. Giménez for her help with figures and A. F. López-Millán and A. Álvarez-Fernández for valuable discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Gogorcena.

Additional information

Responsible Editor: Jian Feng Ma.

S. Jiménez and F. Morales contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiménez, S., Morales, F., Abadía, A. et al. Elemental 2-D mapping and changes in leaf iron and chlorophyll in response to iron re-supply in iron-deficient GF 677 peach-almond hybrid. Plant Soil 315, 93–106 (2009). https://doi.org/10.1007/s11104-008-9735-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-008-9735-9

Keywords

Navigation