Skip to main content
Log in

Delineation of genes for a major QTL governing heat stress tolerance in chickpea

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Chickpea (Cicer arietinum) is a cool season grain legume experiencing severe yield loss during heat stress due to the intensifying climate changes and its associated gradual increase of mean temperature. Hence, understanding the genetic architecture regulating heat stress tolerance has emerged as an important trait to be addressed for enhancing yield and productivity of chickpea under heat stress. The present study is intended to identify the major genomic region(s) governing heat stress tolerance in chickpea. For this, an integrated genomics-assisted breeding strategy involving NGS-based high-resolution QTL-seq assay, QTL region-specific association analysis and molecular haplotyping was deployed in a population of 206 mapping individuals and a diversity panel of 217 germplasm accessions of chickpea. This combinatorial strategy delineated a major 156.8 kb QTL genomic region, which was subsequently narrowed-down to a functional candidate gene CaHSFA5 and its natural alleles associated strongly with heat stress tolerance in chickpea. Superior natural alleles and haplotypes delineated from the CaHSFA5 gene have functional significance in regulating heat stress tolerance in chickpea. Histochemical staining, interaction studies along with differential expression profiling of CaHSFA5 and ROS scavenging genes suggest a cross talk between CaHSFA5 with ROS homeostasis pertaining to heat stress tolerance in chickpea. Heterologous gene expression followed by heat stress screening further validated the functional significance of CaHSFA5 for heat stress tolerance. The salient outcomes obtained here can have potential to accelerate multiple translational genomic analysis including marker-assisted breeding and gene editing in order to develop high-yielding heat stress tolerant chickpea varieties.

Key message

An integrated next-generation genomic strategy delineates the functionally relevant gene and alleles for a major QTL governing heat stress tolerance in chickpea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  • Bajaj D, Saxena MS, Kujur A, Das S, Badoni S et al (2015) Genome-wide conserved non-coding microsatellite (CNMS) marker-based integrative genetical genomics for quantitative dissection of seed weight in chickpea. J Exp Bot 66:1271–1290

    Article  CAS  PubMed  Google Scholar 

  • Baniwal SK, Chan KY, Scharf KD, Nover L (2007) Role of heat stress transcription factor HsfA5 as specific repressor of HsfA4. J Biol Chem 282:3605–3613

    Article  CAS  PubMed  Google Scholar 

  • Basu U, Upadhyaya HD, Srivastava R, Daware A, Malik N et al (2019) ABC transporter-mediated transport of glutathione conjugates enhances seed yield and quality in chickpea. Plant Physiol 180:253–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blum A, Ebercon A (1981) Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Sci 21:43–47

    Article  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinform 23:2633–2635

    Article  CAS  Google Scholar 

  • Chakraborty A, Junaid A, Parida SK, Bhatia S (2023) Integrated genomic approaches delineate a novel role of ROP1 ENHANCER1 in controlling seed protein content of chickpea. J Exp Bot 74:817–834

    Article  CAS  PubMed  Google Scholar 

  • Das S, Singh M, Srivastava R, Bajaj D, Saxena MS et al (2016) mQTL-seq delineates functionally relevant candidate gene harbouring a major QTL regulating pod number in chickpea. DNA Res 23:53–65

    CAS  PubMed  Google Scholar 

  • Das S, Upadhyaya HD, Bajaj D, Kujur A, Badoni S et al (2015) Deploying QTL-seq for rapid delineation of a potential candidate gene underlying major trait-associated QTL in chickpea. DNA Res 22:193–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davletova S, Rizhsky L, Liang H, Shengqiang Z, Oliver DJ et al (2005) Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17(1):268–281

  • Daware AV, Srivastava R, Singh AK, Parida SK, Tyagi AK (2017) Regional association analysis of metaQTLs delineates candidate grain size genes in rice. Front Plant Sci 8:807

    Article  PubMed  PubMed Central  Google Scholar 

  • Devasirvatham V, Gaur PM, Mallikarjuna N, Raju TN, Trethowan RM, Tan DK (2013) Reproductive biology of chickpea response to heat stress in the field is associated with the performance in controlled environments. Field Crops Res 142:9–19

    Article  Google Scholar 

  • Dong SS, He WM, Ji JJ, Zhang C, Guo Y, Yang TL (2021) LDBlockShow: a fast and convenient tool for visualizing linkage disequilibrium and haplotype blocks based on variant call format files. Brief Bioinform 22:227

    Article  Google Scholar 

  • Driedonks N, Xu J, Peters JL, Park S, Rieu I (2015) Multi-level interactions between heat shock factors, heat shock proteins, and the redox system regulate acclimation to heat. Front Plant Sci 6:999

    Article  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Noctor G (2005) Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071

    Article  CAS  Google Scholar 

  • Garg R, Sahoo A, Tyagi AK, Jain M (2010) Validation of internal control genes for quantitative gene expression studies in chickpea (Cicer arietinum L.). Biochem Biophys Res Commun 396:283–288

    Article  CAS  PubMed  Google Scholar 

  • Gaur PM, Jukanti AK, Varshney RK (2012) Impact of genomic technologies on chickpea breeding strategies. Agronomy 2:199–221

    Article  Google Scholar 

  • Gaur PM, Jukanti AK, Samineni S, Chaturvedi SK, Basu PS et al (2013) Climate change and heat stress tolerance in chickpea. Climate Change Plant Abiot Stress Tolerance 24:837–856

    Article  Google Scholar 

  • Illa-Berenguer E, Van Houten J, Huang Z, van der Knaap E (2015) Rapid and reliable identification of tomato fruit weight and locule number loci by QTL-seq. Theor Appl Genet 128:1329–1342

    Article  PubMed  Google Scholar 

  • Jambunathan N (2010) Determination and detection of reactive oxygen species (ROS), lipid peroxidation, and electrolyte leakage in plants. Plant Stress Toler 4:291–297

    Article  Google Scholar 

  • Jha UC, Nayyar H, Palakurthi R, Jha R, Valluri V, Bajaj P (2021) Major QTLs and potential candidate genes for heat stress tolerance identified in chickpea (Cicer arietinum L.). Front Plant Sci 12:655103

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang C, Xu J, Zhang HAO, Zhang X, Shi J et al (2009) A cytosolic class I small heat shock protein, RcHSP17. 8, of Rosa chinensis confers resistance to a variety of stresses to Escherichia coli, yeast and Arabidopsis thaliana. Plant Cell Environ 32:1046–1059

    Article  CAS  PubMed  Google Scholar 

  • Katano K, Honda K, Suzuki N (2018) Integration between ROS regulatory systems and other signals in the regulation of various types of heat responses in plants. Int J Mol Sci 19:3370

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaushal N, Awasthi R, Gupta K, Gaur P, Siddique KH, Nayyar H (2013) Heat-stress-induced reproductive failures in chickpea (Cicer arietinum) are associated with impaired sucrose metabolism in leaves and anthers. Funct Plant Biol 40:1334–1349

    Article  CAS  PubMed  Google Scholar 

  • Kotak S, Larkindale J, Lee U, von Koskull-Döring P, Vierling E, Scharf KD (2007) Complexity of the heat stress response in plants. Curr Opin Plant Biol 10(3):310–316

  • Krishnamurthy L, Gaur PM, Basu PS, Chaturvedi SK, Tripathi S et al (2011) Large genetic variation for heat tolerance in the reference collection of chickpea (Cicer arietinum L.) germplasm. Plant Genet Resour 9:59–69

    Article  Google Scholar 

  • Kumar S, Thakur P, Kaushal N, Malik JA, Gaur P, Nayyar H (2013) Effect of varying high temperatures during reproductive growth on reproductive function, oxidative stress and seed yield in chickpea genotypes differing in heat sensitivity. Arch Agron Soil Sci 59:823–843

    Article  CAS  Google Scholar 

  • Kushwah A, Bhatia D, Singh I, Thudi M, Singh G et al (2021) Identification of stable heat tolerance QTLs using inter-specific recombinant inbred line population derived from GPF 2 and ILWC 292. PLoS ONE 16:e0254957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Chen Q, Gao X, Qi B, Chen N et al (2005) AtHsfA2 modulates expression of stress responsive genes and enhances tolerance to heat and oxidative stress in Arabidopsis. Sci China Life Sci 48:540–550

    Article  CAS  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipka AE, Tian F, Wang Q, Peiffer J, Li M et al (2012) GAPIT: genome association and prediction integrated tool. Bioinformatics 28:2397–2399

    Article  CAS  PubMed  Google Scholar 

  • Lu H, Lin T, Klein J, Wang S, Qi J et al (2014) QTL-seq identifies an early flowering QTL located near Flowering Locus T in cucumber. Theor Appl Genet 127:1491–1499

    Article  PubMed  Google Scholar 

  • Malik N, Ranjan R, Parida SK, Agarwal P, Tyagi AK (2020) Mediator subunit OsMED14_1 plays an important role in rice development. Plant J 101:1411–1429

    Article  CAS  PubMed  Google Scholar 

  • Merga B, Haji J (2019) Economic importance of chickpea: Production, value, and world trade. Cogent Food Agric 5:1615718

    Article  Google Scholar 

  • Mishra RC, Grover A (2016) ClpB/Hsp100 proteins and heat stress tolerance in plants. Crit Rev Biotechnol 36:862–874

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Questions and future challenges. Trends Plant Sci 10:490–498

    Article  Google Scholar 

  • Mohammed A, Tana T, Singh P, Korecha D, Molla A (2017) Management options for rainfed chickpea (Cicer arietinum L.) in northeast Ethiopia under climate change condition. Clim Risk Manag 16:222–233

    Article  Google Scholar 

  • Nover L, Bharti K, Döring P, Mishra SK, Ganguli A, Scharf KD (2001) Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress Chaperones 6:177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nubankoh P, Wanchana S, Saensuk C, Ruanjaichon V, Cheabu S et al (2020) QTL-seq reveals genomic regions associated with spikelet fertility in response to a high temperature in rice (Oryza sativa L.). Plant Cell Rep 39:149–162

    Article  CAS  PubMed  Google Scholar 

  • Pandey MK, Khan AW, Singh VK, Vishwakarma MK, Shasidhar Y et al (2017) QTL-seq approach identified genomic regions and diagnostic markers for rust and late leaf spot resistance in groundnut (Arachis hypogaea L.). Plant Biotechnol J 15:927–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panchuk II, Volkov RA, Schoffl F (2002) Heat stress-and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiol 129:838–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel RK, Jain M (2012) NGS QC Toolkit: a toolkit for quality control of next generation sequencing data. PLoS ONE 7:e30619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pattison AL, Uddin MN, Trethowan RM (2021) Use of in-situ field chambers to quantify the influence of heat stress in chickpea (Cicer arientinum). Field Crops Res 270:108215

    Article  Google Scholar 

  • Paul PJ, Samineni S, Thudi M, Sajja SB, Rathore A et al (2018) Molecular mapping of QTLs for heat tolerance in chickpea. Int J Mol Sci 19:2166

    Article  PubMed  PubMed Central  Google Scholar 

  • Reddy RA, Kumar B, Reddy PS, Mishra RN, Mahanty S et al (2009) Molecular cloning and characterization of genes encoding Pennisetum glaucum ascorbate peroxidase and heat-shock factor: interlinking oxidative and heat-stress responses. J Plant Physiol 166:1646–1659

    Article  CAS  PubMed  Google Scholar 

  • Samtani H, Sharma A, Khurana P (2023) Ectopic overexpression of TaHsfA5 promotes thermomorphogenesis in Arabidopsis thaliana and thermotolerance in Oryza sativa. Plant Mol Biol 4:1–19

    Google Scholar 

  • Schramm F, Ganguli A, Kiehlmann E, Englich G, Walch D et al (2006) The heat stress transcription factor HsfA2 serves as a regulatory amplifier of a subset of genes in the heat stress response in Arabidopsis. Plant Mol Biol 60:759–772

    Article  CAS  PubMed  Google Scholar 

  • Singh NT, Dhaliwal GS (1972) Effect of soil temperature on seedling emergence in different crops. Plant Soil 37:441–444

    Article  Google Scholar 

  • Singh VK, Khan AW, Jaganathan D, Thudi M, Roorkiwal M et al (2016) QTL-seq for rapid identification of candidate genes for 100 seed weight and root/total plant dry weight ratio under rainfed conditions in chickpea. Plant Biotechnol J 14:2110–2119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh V, Sinha P, Obala J, Khan AW, Chitikineni A et al (2022) QTL-seq for the identification of candidate genes for days to flowering and leaf shape in pigeonpea. Heredity 128:411–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song J, Li Z, Liu Z, Guo Y, Qiu LJ (2017) Next-generation sequencing from bulked-segregant analysis accelerates the simultaneous identification of two qualitative genes in soybean. Front Plant Sci 8:919

    Article  PubMed  PubMed Central  Google Scholar 

  • Srivastava R, Upadhyaya HD, Kumar R, Daware A, Basu U et al (2017) A multiple QTL-Seq strategy delineates potential genomic loci governing flowering time in chickpea. Front Plant Sci 8:1105

    Article  PubMed  PubMed Central  Google Scholar 

  • Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S et al (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183

    Article  CAS  PubMed  Google Scholar 

  • Tian F, Yang DC, Meng YQ, Jin J, Gao G (2020) PlantRegMap: charting functional regulatory maps in plants. Nucleic Acids Res 48:104–113

    Google Scholar 

  • Upadhyaya HD, Dronavalli N, Gowda CLL, Singh S (2011) Identification and evaluation of chickpea germplasm for tolerance to heat stress. Crop Sci 51:2079–2094

    Article  Google Scholar 

  • Varshney RK, Roorkiwal M, Sun S, Bajaj P, Chitikineni A (2021) A chickpea genetic variation map based on the sequencing of 3,366 genomes. Nature 599:622–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varshney RK, Song C, Saxena RK, Azam S, Yu S et al (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31:240–246

    Article  CAS  PubMed  Google Scholar 

  • Volkov RA, Panchuk II, Mullineaux PM, Schöffl F (2006) Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis. Plant Mol Biol 61:733–746

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Mao L, Zeng Z, Yu X, Lian J et al (2021) Genetic mapping high protein content QTL from soybean ‘Nanxiadou 25’and candidate gene analysis. BMC Plant Biol 21:1–13

    Article  Google Scholar 

  • Yano K, Yamamoto E, Aya K, Takeuchi H, Lo PC et al (2016) Genome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice. Nat Genet 48:927–934

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Zhang K, Wu J, Guo N, Liang J et al (2020) QTL-Seq and sequence assembly rapidly mapped the gene BrMYBL2. 1 for the purple trait in Brassica rapa. Sci Rep 10:1–9

    Google Scholar 

Download references

Acknowledgements

We are thankful to the Central Instrumentation Facility (CIF), Plant Growth Facility (PGF), and DBT-eLibrary Consortium (DeLCON) of NIPGR, New Delhi for providing timely support and access to e-resources for this study.

Funding

Financial support for this study was provided by the research grants from the ICAR and NIPGR, Department of Biotechnology (DBT), Government of India. JKM acknowledge the DBT for research fellowship award.

Author information

Authors and Affiliations

Authors

Contributions

JKM has performed experiments and drafted the manuscript. AY assisted in the yeast-related molecular biology experiments. VT analysed the dataset used. HN, GPD, PA, SKP and UCJ conceived the idea, and guided, participated in drafting, and correcting the manuscript critically and all authors gave the final approval of the version to be published.

Corresponding authors

Correspondence to Swarup K. Parida or Uday Chand Jha.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be constructed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohanty, J.K., Thakro, V., Yadav, A. et al. Delineation of genes for a major QTL governing heat stress tolerance in chickpea. Plant Mol Biol 114, 19 (2024). https://doi.org/10.1007/s11103-024-01421-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11103-024-01421-4

Keywords

Navigation