Skip to main content
Log in

Heightened miR6024-NLR interactions facilitate necrotrophic pathogenesis in tomato

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

miR6024 acts as a negative regulator of R genes, hence of Tomato plant immunity, and facilitates disease by the necrotrophic pathogen A. solani.

Abstract

Plant resistance genes or Nucleotide-binding leucine-rich repeat (NLR) genes, integral components of plant disease stress-signaling are targeted by variable groups of miRNAs. However, the significance of miRNA-mediated regulation of NLRs during a pathogen stress response, specifically for necrotrophic fungus, is poorly understood. A thorough examination of Tomato NLRs and miRNAs could map substantial interactions of which half the annotated NLRs were targets of Solanaceae-specific and conserved miRNAs, at the NB subdomain. The Solanaceae-specific miR6024 and its NLR targets analysed in different phytopathogenic stresses revealed differential and mutually antagonistic regulation. Interestingly, miR6024-targeted cleavage of a target NLR also triggered the generation of secondary phased siRNAs which could potentially amplify the defense signal. RNA-seq analysis of leaf tissues from miR6024 overexpressing Tomato plants evidenced a perturbation in the defense transcriptome with the transgenics showing unwarranted immune response-related genes’ expression with or without infection with necrotrophic Alternaria solani, though no adverse effect could be observed in the growth and development of the transgenic plants. Transgenic plants exhibited constitutive downregulation of the target NLRs, aggravated disease phenotype with an enhanced lesion, greater ROS generation and hypersusceptibility to A. solani infection, thus establishing that miR6024 negatively impacts plant immune response during necrotrophic pathogenesis. Limited knowledge about the outcome of NLR-miRNA interaction during necrotrophic pathogenesis is a hindrance to the deployment of miRNAs in crop improvement programs. With the elucidation of the necrotrophic disease-synergistic role played by miR6024, it becomes a potent candidate for biotechnological manipulation for the rapid development of pathogen-tolerant solanaceous plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the paper and within its supplementary data published online. RNA-seq data is available at GEO under the accession GSE166013.

Abbreviations

NLR:

Nucleotide-binding leucine-rich repeat

ToLCNDV:

Tomato Leaf Curl New Delhi Virus

RBOH:

Respiratory Burst Oxidase Homologs

References

  • Andolfo G, Jupe F, Witek K, Etherington GJ, Ercolano MR, Jones JD (2014) Defining the full tomato NB-LRR resistance gene repertoire using genomic and cDNA RenSeq. BMC Plant Biol 14:120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arikit S, Xia R, Kakrana A, Huang K, Zhai J, Yan Z, Valdés-López O, Prince S, Musket TA, Nguyen HT, Stacey G, Meyers BC (2014) An atlas of soybean small RNAs identifies phased siRNAs from hundreds of coding genes. Plant Cell 26:4584–4601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Axtell MJ (2013) Classification and comparison of small RNAs from plants. Annu Rev Plant Biol 64:137–159

    Article  CAS  PubMed  Google Scholar 

  • Bentham AR, Burdett H, Anderson P, Williams S, Kobe B (2017) Animal NLRs provide structural insights into plant NLR function. Ann Bot 119(68Y):702

    Google Scholar 

  • Bolwell GP, Bindschedler LV, Blee KA, Butt VS, Davies DR, Gardner SL, Gerrish C, Minibayeva F (2002) The apoplastic oxidative burst in response to biotic stress in plants: a three-component system. J Exp Bot 53:1367–1376

    CAS  PubMed  Google Scholar 

  • Buscaill P, Rivas S (2014) Transcriptional control of plant defence responses. Curr Opin Plant Biol 20:35–46

    Article  CAS  PubMed  Google Scholar 

  • Canto-Pastor A, Bamc Santos AA, Valli W, Summers SS, Baulcombe DC (2019) Enhanced resistance to bacterial and oomycete pathogens by short tandem target mimic RNAs in tomato. Proc Natl Acad Sci U S A 116:2755–2760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chamnongpol S, Willekens H, Moeder W, Langebartels C, Sandermann H Jr, Van Montagu M, Inze D, Van Camp W (1998) Defense activation and enhanced pathogen tolerance induced by H2O2 in transgenic tobacco. Proc Natl Acad Sci USA 95:5818–5823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen HM, Chen LT, Patel K, Li YH, Baulcombe DC, Wu SH (2010) 22-Nucleotide RNAs trigger secondary siRNA biogenesis in plants. Proc Natl Acad Sci USA 107:15269–15274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Meng J, Zhai J, Xu P, Luan Y (2017) MicroRNA396a-5p and -3p induce tomato disease susceptibility by suppressing target genes and upregulating salicylic acid. Plant Sci 265:177–187

    Article  CAS  PubMed  Google Scholar 

  • Chiumenti M, Catacchio CR, Miozzi L, Pirovano W, Ventura M, Pantaleo V (2018) A short indel-lacking-resistance gene triggers silencing of the photosynthetic machinery components through TYLCSV-associated endogenous siRNAs in tomato. Front Plant Sci 9:1470

    Article  PubMed  PubMed Central  Google Scholar 

  • Coll NS, Epple P, Dangl JL (2011) Programmed cell death in the plant immune system. Cell Death Differ 18:1247–1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui H, Tsuda K, Parker JE (2015) Effector-triggered immunity: from pathogen perception to robust defense. Annu Rev Plant Biol 66:487–511

    Article  CAS  PubMed  Google Scholar 

  • Cui X, Yan Q, Gan S, Xue D, Dou D, Guo N, Xing H (2017) Overexpression of gma-miR1510a/b suppresses the expression of a NB-LRR domain gene and reduces resistance to Phytophthora sojae. Gene 621:32–39

    Article  CAS  PubMed  Google Scholar 

  • Cuperus JT, Carbonell A, Fahlgren N, Garcia-Ruiz H, Burke RT, Takeda A, Sullivan CM, Gilbert SD, Montgomery TA, Carrington JC (2010) Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis. Nat Struct Mol Biol 17:997–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai Z, Tan J, Zhou C, Yang X, Yang F, Zhang S, Sun S, Miao X, Shi Z (2019) The OsmiR396-OsGRF8-OsF3H-flavonoid pathway mediates resistance to the brown planthopper in rice (Oryza sativa). Plant Biotechnol J 17:1657–1669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Vries S, Kloesges T, Rose LE (2015) Evolutionarily dynamic, but robust, targeting of resistance genes by the miR482/2118 gene family in the solanaceae. Genome Biol Evol 7:3307–3321

    Article  PubMed  PubMed Central  Google Scholar 

  • de Vries S, Kukuk A, von Dahlen JK, Schnake A, Kloesges T, Rose LE (2018) Expression profiling across wild and cultivated tomatoes supports the relevance of early miR482/2118 suppression for Phytophthora resistance. Proc Biol Sci. https://doi.org/10.1098/rspb.2017.2560

    Article  PubMed  PubMed Central  Google Scholar 

  • Demidchik V (2015) Mechanisms of oxidative stress in plants: From classical chemistry to cell biology. Environ Exp Bot 109:212–228

    Article  CAS  Google Scholar 

  • Deng Y, Wang J, Tung J, Liu D, Zhou Y, He S, Du Y, Baker B, Li F (2018) A role for small RNA in regulating innate immunity during plant growth. PLoS Pathog 14:e1006756

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dickman MB, Fluhr R (2013) Centrality of host cell death in plant-microbe interactions. Annu Rev Phytopathol 51:543–570

    Article  CAS  PubMed  Google Scholar 

  • Fei Q, Li P, Teng C, Meyers BC (2015) Secondary siRNAs from Medicago NB-LRRs modulated via miRNA-target interactions and their abundances. Plant J 83:451–465

    Article  CAS  PubMed  Google Scholar 

  • Galun E (2005) RNA silencing in plants. In Vitro Cellular & Developmental Biology - Plant 41:113–123

    Article  CAS  Google Scholar 

  • Govrin EM, Levine A (2000) The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr Biol 10:751–757

    Article  CAS  PubMed  Google Scholar 

  • Grant JJ, Yun BW, Loake GJ (2000) ’Oxidative burst and cognate redox signalling reported by luciferase imaging: identification of a signal network that functions independently of ethylene SA and Me-JA but is dependent on MAPKK activity. Plant J 24:569–582

    Article  CAS  PubMed  Google Scholar 

  • He XF, Fang YY, Feng L, Guo HS (2008) Characterization of conserved and novel microRNAs and their targets, including a TuMV-induced TIR-NBS-LRR class R gene-derived novel miRNA in Brassica. FEBS Lett 582:2445–2452

    Article  CAS  PubMed  Google Scholar 

  • Hewezi T, Piya S, Qi M, Balasubramaniam M, Rice JH, Baum TJ (2016) Arabidopsis miR827 mediates post-transcriptional gene silencing of its ubiquitin E3 ligase target gene in the syncytium of the cyst nematode Heterodera schachtii to enhance susceptibility. Plant J 88:179–192

    Article  CAS  PubMed  Google Scholar 

  • Hong YH, Meng J, He XL, Zhang YY, Luan YS (2019) Overexpression of MiR482c in tomato induces enhanced susceptibility to late blight. Cells 8(8):822

    Article  CAS  PubMed Central  Google Scholar 

  • Jiang N, Cui J, Meng J, Luan Y (2018a) A tomato nucleotide binding sites-leucine-rich repeat gene is positively involved in plant resistance to phytophthora infestans. Phytopathology 108:980–987

    Article  CAS  PubMed  Google Scholar 

  • Jiang N, Meng J, Cui J, Sun G, Luan Y (2018b) Function identification of miR482b, a negative regulator during tomato resistance to Phytophthora infestans. Hortic Res 5:9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Karlova R, van Haarst JC, Maliepaard C, van de Geest H, Bovy AG, Lammers M, Angenent GC, de Maagd RA (2013) Identification of microRNA targets in tomato fruit development using high-throughput sequencing and degradome analysis. J Exp Bot 64:1863–1878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi M, Yoshioka M, Asai S, Nomura H, Kuchimura K, Mori H, Doke N, Yoshioka H (2012) StCDPK5 confers resistance to late blight pathogen but increases susceptibility to early blight pathogen in potato via reactive oxygen species burst. New Phytol 196:223–237

    Article  CAS  PubMed  Google Scholar 

  • Li F, Pignatta D, Bendix C, Brunkard JO, Cohn MM, Tung J, Sun H, Kumar P, Baker B (2012) MicroRNA regulation of plant innate immune receptors. Proc Natl Acad Sci USA 109:1790–1795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Lu YG, Shi Y, Wu L, Xu YJ, Huang F, Guo XY, Zhang Y, Fan J, Zhao JQ, Zhang HY, Xu PZ, Zhou JM, Wu XJ, Wang PR, Wang WM (2014) Multiple rice microRNAs are involved in immunity against the blast fungus Magnaporthe oryzae. Plant Physiol 164:1077–1092

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhao SL, Li JL, Hu XH, Wang H, Cao XL, Xu YJ, Zhao ZX, Xiao ZY, Yang N, Fan J, Huang F, Wang WM (2017) Osa-miR169 negatively regulates rice immunity against the blast fungus magnaporthe oryzae. Front Plant Sci 8:2

    PubMed  PubMed Central  Google Scholar 

  • Liu J, Cheng X, Liu D, Xu W, Wise R, Shen QH (2014) The miR9863 family regulates distinct Mla alleles in barley to attenuate NLR receptor-triggered disease resistance and cell-death signaling. PLoS Genet 10:e1004755

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • López-Márquez, D., Del-Espino, A., López-Pagán, N., Rodríguez-Negrete, E.A., Rubio-Somoza, I., Ruiz-Albert, J., Bejarano, E.R., Beuzón, C.R. MiRNA and phasiRNAs-mediated regulation of TIR-NBS-LRR defense genes in Arabidopsis thaliana. bioRxiv, 2020.03.02.972620 (2020).

  • Luan Y, Cui J, Li J, Jiang N, Liu P, Meng J (2018) Effective enhancement of resistance to Phytophthora infestans by overexpression of miR172a and b in Solanum lycopersicum. Planta 247:127–138

    Article  CAS  PubMed  Google Scholar 

  • Mustroph A, Juntawong P, Bailey-Serres J (2009) Isolation of plant polysomal mRNA by differential centrifugation and ribosome immunopurification methods. Methods Mol Biol 553:109–126

    Article  CAS  PubMed  Google Scholar 

  • Ouyang S, Park G, Atamian HS, Han CS, Stajich JE, Kaloshian I, Borkovich KA (2014) MicroRNAs suppress NB domain genes in tomato that confer resistance to Fusarium oxysporum. PLoS Pathog 10:e1004464

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peralta IE, Knapp S, Spooner DM (2005) New Species of Wild Tomatoes (<span class="genus-species">Solanum</span> Section <span class="genus-species">Lycopersicon</span>: Solanaceae) from Northern Peru. Syst Bot 30(424–34):11

    Google Scholar 

  • Pombo MA, Zheng Yi, Fernandez-Pozo N, Dunham DM, Fei Z, Martin GB (2014) Transcriptomic analysis reveals tomato genes whose expression is induced specifically during effector-triggered immunity and identifies the Epk1 protein kinase which is required for the host response to three bacterial effector proteins. Genome Biol 15:492

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pombo MA, Zheng Yi, Fei Z, Martin GB, Rosli HG (2017) Use of RNA-seq data to identify and validate RT-qPCR reference genes for studying the tomato-Pseudomonas pathosystem. Sci Rep 7:44905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prigigallo MI, Križnik M, Paola D, Catalano D, Gruden K, Finetti-Sialer MM, Cillo F (2019) Potato virus Y infection alters small RNA metabolism and immune response in tomato. Viruses 11(12):1100

    Article  CAS  PubMed Central  Google Scholar 

  • Rajagopalan R, Vaucheret H, Trejo J, Bartel DP (2006) A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20:3407–3425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosli HG, Zheng Y, Pombo MA, Zhong S, Bombarely A, Fei Z, Collmer A, Martin GB (2013) Transcriptomics-based screen for genes induced by flagellin and repressed by pathogen effectors identifies a cell wall-associated kinase involved in plant immunity. Genome Biol 14:R139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sagi M, Fluhr R (2006) Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol 141:336–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkar D, Maji RK, Dey S, Sarkar A, Ghosh Z, Kundu P (2017) Integrated miRNA and mRNA expression profiling reveals the response regulators of a susceptible tomato cultivar to early blight disease. DNA Res 24:235–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shivaprasad PV, Chen HM, Patel K, Bond DM, Santos BA, Baulcombe DC (2012) A microRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other mRNAs. Plant Cell 24:859–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soto-Suárez M, Baldrich P, Weigel D, Rubio-Somoza I, Segundo BS (2017) The Arabidopsis miR396 mediates pathogen-associated molecular pattern-triggered immune responses against fungal pathogens. Sci Rep 7:44898

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Su Y, Li H-G, Wang Y, Li S, Hou-Ling Wang LuYu, He F, Yang Y, Feng C-H, Shuai P, Liu C, Yin W, Xia X (2018) Poplar miR472a targeting NBS-LRRs is involved in effective defence against the necrotrophic fungus Cytospora chrysosperma. J Exp Bot 69:5519–5530

    Article  CAS  PubMed  Google Scholar 

  • Takken FL, Goverse A (2012) How to build a pathogen detector: structural basis of NB-LRR function. Curr Opin Plant Biol 15:375–384

    Article  CAS  PubMed  Google Scholar 

  • Takken FL, Albrecht M, Tameling WI (2006) Resistance proteins: molecular switches of plant defence. Curr Opin Plant Biol 9:383–390

    Article  CAS  PubMed  Google Scholar 

  • Torres MA, Dangl JL (2005) Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol 8:397–403

    Article  CAS  PubMed  Google Scholar 

  • Wei C, Kuang H, Li F, Chen J (2014) The I2 resistance gene homologues in Solanum have complex evolutionary patterns and are targeted by miRNAs. BMC Genomics 15:743

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wong J, Gao L, Yang Y, Zhai J, Arikit S, Yu Y, Duan S, Chan V, Xiong Q, Yan J, Li S, Liu R, Wang Y, Tang G, Meyers BC, Chen X, Ma W (2014) Roles of small RNAs in soybean defense against Phytophthora sojae infection. Plant J 79:928–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Worley JN, Pombo MA, Zheng Yi, Dunham DM, Myers CR, Fei Z, Martin GB (2016) A novel method of transcriptome interpretation reveals a quantitative suppressive effect on tomato immune signaling by two domains in a single pathogen effector protein. BMC Genomics 17:229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xia R, Zhu H, An YQ, Beers EP, Liu Z (2012) Apple miRNAs and tasiRNAs with novel regulatory networks. Genome Biol 13:R47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia R, Meyers BC, Liu Z, Beers EP, Ye S, Liu Z (2013) MicroRNA superfamilies descended from miR390 and their roles in secondary small interfering RNA Biogenesis in Eudicots. Plant Cell 25:1555–1572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Mu X, Liu C, Cai J, Shi K, Zhu W, Yang Q (2015) Overexpression of potato miR482e enhanced plant sensitivity to Verticillium dahliae infection. J Integr Plant Biol 57:1078–1088

    Article  CAS  PubMed  Google Scholar 

  • Yu C, Chen Y, Cao Y, Chen H, Wang J, Bi Y-M, Tian F, Yang F, Rothstein SJ, Zhou X, He C (2018) ’Overexpression of miR169o, an overlapping microRNA in response to both nitrogen limitation and bacterial infection promotes nitrogen use efficiency and susceptibility to bacterial blight in rice. Plant Cell Physiol 59:1234–1247

    Article  CAS  PubMed  Google Scholar 

  • Zhai J, Jeong DH, De Paoli E, Park S, Rosen BD, Li Y, González AJ, Yan Z, Kitto SL, Grusak MA, Jackson SA, Stacey G, Cook DR, Green PJ, Sherrier DJ, Meyers BC (2011) MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs. Genes Dev 25:2540–2553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Xia R, Kuang H, Meyers BC (2016a) The diversification of plant NBS-LRR defense genes directs the evolution of microRNAs that target them. Mol Biol Evol 33:2692–2705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Li Y, Zhang Y, Wu C, Wang S, Hao L, Wang S, Li T (2017) Md-miR156ab and Md-miR395 target WRKY transcription factors to influence apple resistance to leaf spot disease. Front Plant Sci 8:526

    PubMed  PubMed Central  Google Scholar 

  • Zhang S, Wang L, Zhao R, Yu W, Li R, Li Y, Sheng J, Shen L (2018) Knockout of SlMAPK3 reduced disease resistance to Botrytis cinerea in tomato plants. J Agric Food Chem 66:8949–8956

    Article  CAS  PubMed  Google Scholar 

  • Zhu QH, Fan L, Liu Y, Xu H, Llewellyn D, Wilson I (2013) miR482 regulation of NBS-LRR defense genes during fungal pathogen infection in cotton. PLOS ONE 8:e84390

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu X, Lu C, Du L, Ye X, Liu X, Coules A, Zhang Z (2017) The wheat NB-LRR gene TaRCR1 is required for host defence response to the necrotrophic fungal pathogen Rhizoctonia cerealis. Plant Biotechnol J 15:674–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

SD and AS received fellowships from CSIR, GoI and SC received DST-INSPIRE fellowship. This work is supported by grants from DBT and SERB, GoI to PK. The authors acknowledge Bose Institute CIF for technical help.

Funding

This work was supported by the Department of Biotechnology, Ministry of Science and Technology (BT/PR12942/AGR/36/652/2009) and the Science and Engineering Research Board (CRG/2018/003362). DBT GoI to P.k.

Author information

Authors and Affiliations

Authors

Contributions

SD and PK conceptualised and planned the research. SD performed most of the experiments and analysed the data. RS quantitated the phasiRNAs. AS contributed to several bioinformatic analyses. SC contributed to transgenic generation. RS and AM contributed to dCas9-KRAB based NLR repression. SD and PK wrote and revised the manuscript. ZG, AS and SC edited the manuscript.

Corresponding author

Correspondence to Pallob Kundu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, S., Sarkar, A., Chowdhury, S. et al. Heightened miR6024-NLR interactions facilitate necrotrophic pathogenesis in tomato. Plant Mol Biol 109, 717–739 (2022). https://doi.org/10.1007/s11103-022-01270-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-022-01270-z

Keywords

Navigation