Skip to main content
Log in

Phenolic sucrose esters: evolution, regulation, biosynthesis, and biological functions

  • Review
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Phenolic sucrose esters (PSEs) are a diverse group of specialized metabolites that are present in several angiosperm lineages. Phylogenetic reconstruction and structural variation suggest that these metabolites may have evolved independently in monocots and dicots. Constitutive variation in PSE abundance across plant organs and developmental stages is correlated with transcriptional regulation of the upstream phenylpropanoid pathway, whereas pathogen induction is regulated by stress-related phytohormones such as ethylene. Shared structural features of PSEs indicate that their biosynthesis may involve one or more hydroxycinnamoyl transferases and BAHD acetyltransferases, which could be identified by correlative analyses of multi-omics datasets. Elucidation of the core biosynthetic pathway of PSEs will be essential for more detailed studies of the biological function of these compounds and their potential medicinal and agricultural applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

All data used for analyses in this publication were obtained from the public domain.

References

  • Abdallah OM, Kamel MS, Mohamed MH (1994) Phenylpropanoid glycosides of Prunus ssiori. Phytochemistry 37(6):1689–1692

    Article  CAS  Google Scholar 

  • Balmer D, Papajewski DVd, Planchamp C, Glauser G, Mauch-Mani B (2013) Induced resistance in maize is based on organ-specific defence responses. Plant J 74(2):213–225. https://doi.org/10.1111/tpj.12114

    Article  CAS  PubMed  Google Scholar 

  • Bashir A, Hamburger M, Msonthi JD, Hostettmann K (1993) Sinapic acid esters from Polygala virgata. Phytochemistry 32(3):741–745

    Article  CAS  PubMed  Google Scholar 

  • Begum A (2007) Isolation and structural studies on phytochemicals active in various biological assays. University of Karachi, Karachi

    Google Scholar 

  • Bokern M, Heuer S, Wray V, Witte L, Macek T, Vanek T, Strack D (1991) Ferulic acid conjugates and betacyanins from cell cultures of Beta vulgaris. Phytochemistry 30(10):3261–3265

    Article  CAS  Google Scholar 

  • Brown LVL, Larson SR, Sneden AT (1998) Vanicosides C−F, new phenylpropanoid glycosides from Polygonum pensylvanicum. J Nat Prod 61(6):762–766

    Article  CAS  PubMed  Google Scholar 

  • Buanafina MMDO (2009) Feruloylation in grasses: current and future perspectives. Mol Plant 2(5):861–872

    Article  CAS  Google Scholar 

  • Caliş I, Kirmizibekmez H, Tasdemir D, Sticher O, Ireland CM (2002) Sugar esters from Globularia orientalis. Ztschrift Fur Naturforschung C 57(7–8):591–586

    Article  Google Scholar 

  • Cédric B, Fabre N, Moulis C (2004) A new coumarin glucoside, coumarins and alkaloids from Ruta corsica roots. Fitoterapia 75(2):242–244

    Article  CAS  Google Scholar 

  • Chang CL, Zhang LJ, Chen RY, Kuo LMY, Huang JP, Huang HC, Lee KH, Wu YC, Kuo YH (2010) Antioxidant and anti-inflammatory phenylpropanoid derivatives from Calamus quiquesetinervius. J Nat Prod 73(9):1482–1488

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Li JX, Xu Q (2000) Phenylpropanoid glycosides from Smilax glabra. Phytochemistry 53(8):1051–1055

    Article  CAS  PubMed  Google Scholar 

  • Chen CC, Huang YL, Huang FI, Wang CW, Ou JC (2001) Water-soluble glycosides from Ruta graveolens. J Nat Prod 64(7):990–992

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Zhou YZ, Qiao L, Yao Y, Cao JQ, Hua HM, Pei YH (2008) Two new compounds from Cynanchum amplexicaule. J Asian Nat Prod Res 10(3–4):267–271

    PubMed  Google Scholar 

  • Chen W, Gao YQ, Xie WB, Gong L, Lu K, Wang WS, Li Y, Liu XQ, Zhang HY, Dong HX, Zhang W, Zhang LJ, Yu SB, Wang GW, Lian XM, Luo J (2014) Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism. Nat Genet 46(7):714–721. https://doi.org/10.1038/ng.3007

    Article  CAS  PubMed  Google Scholar 

  • Cho JG, Cha BJ, Seo WD, Jeong RH, Shrestha S, Kim JY, Kang HC, Baek NI (2015) Feruloyl sucrose esters from Oryza sativa roots and their tyrosinase inhibition activity. Chem Nat Compd 51(6):1094–1098

    Article  CAS  Google Scholar 

  • Choudhary MI, Begum A, Abbaskhan A, Rehman S-u, Rahman A-u (2006) Cinnamate derivatives of fructo-oligosaccharides from Lindelofia stylosa. Carbohydr Res 341(14):2398–2405

    Article  CAS  PubMed  Google Scholar 

  • Clifford MN, Jaganath IB, Ludwig IA, Crozier A (2017) Chlorogenic acids and the acyl-quinic acids: discovery, biosynthesis, bioavailability and bioactivity. Nat Prod Rep 34(12):1391–1421. https://doi.org/10.1039/C7NP00030H

    Article  CAS  PubMed  Google Scholar 

  • Cutrone JFQ, Huang S, Trimble J, Li H, Lin PF, Alam M, Klohr SE, Kadow KF (1996) Niruriside, a new HIV REV/RRE binding inhibitor from Phyllanthus niruri. J Nat Prod 59(2):196–199

    Article  Google Scholar 

  • D’Auria JC (2006) Acyltransferases in plants: a good time to be BAHD. Current opinion in plant biology 9(3):331–340. https://doi.org/10.1016/j.pbi.2006.03.016

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, Weckwerth PR, Poretsky E, Murphy KM, Sims J, Saldivar E, Christensen SA, Char SN, Yang B, Tong A, Shen Z, Kremling KA, Buckler ES, Kono T, Nelson DR, Bohlmann J, Bakker MG, Vaughan MM, Khalil AS, Betsiashvili M, Dressano K, Kollner TG, Briggs SP, Zerbe P, Schmelz EA, Huffaker A (2020) Genetic elucidation of interconnected antibiotic pathways mediating maize innate immunity. Nature Plants 6(10):1375–1388. https://doi.org/10.1038/s41477-020-00787-9

    Article  CAS  PubMed  Google Scholar 

  • Dowd PF, Sattler SE (2015) Helicoverpa zea (Lepidoptera: Noctuidae) and Spodoptera frugiperda (Lepidoptera: Noctuidae) responses to Sorghum bicolor (Poales: Poaceae) tissues from lowered lignin lines. J Insect Sci 15(1):162. https://doi.org/10.1093/jisesa/ieu162

    Article  CAS  PubMed  Google Scholar 

  • Dowd PF, Berhow MA, Johnson ET (2018) Enhanced pest resistance and increased phenolic production in maize callus transgenically expressing a maize chalcone isomerase -3 like gene. Plant Gene 13:50–55. https://doi.org/10.1016/j.plgene.2018.01.002

    Article  CAS  Google Scholar 

  • Eudes A, Pereira JH, Yogiswara S, Wang G, Benites VT, Baidoo EEK, Lee TS, Adams PD, Keasling JD, Loqué D (2016) Exploiting the substrate promiscuity of hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyl transferase to reduce lignin. Plant Cell Physiol 57(3):568–579. https://doi.org/10.1093/pcp/pcw016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabre N, Urizzi P, Souchard JP, Fréchard A, Claparols C, Fourasté I, Moulis C (2000) An antioxidant sinapic acid ester isolated from Iberis amara. Fitoterapia 71(4):425–428

    Article  CAS  PubMed  Google Scholar 

  • Fan PH, Hay AE, Marston A, Lou HX, Hostettmann K (2009) Chemical variability of the invasive neophytes Polygonum cuspidatum Sieb. and Zucc. and Polygonum sachalinensis F. Schmidt ex Maxim. Biochem Syst Ecol 37(1):24–34

    Article  CAS  Google Scholar 

  • Fan P, Terrier L, Hay AE, Marston A, Hostettmann K (2010) Antioxidant and enzyme inhibition activities and chemical profiles of Polygonum sachalinensis F.Schmidt ex Maxim (Polygonaceae). Fitoterapia 81(2):124–131

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto K, Nakamura S, Matsumoto T, Ohta T, Ogawa K, Tamura H, Matsuda H, Yoshikawa M (2013) Medicinal flowers. XXXVIII. structures of acylated sucroses and inhibitory effects of constituents on aldose reducatase from the flower buds of Prunus mume. Chem Pharm Bull 61(4):445–451. https://doi.org/10.1248/cpb.c12-01068

    Article  CAS  Google Scholar 

  • Fujimoto K, Nakamura S, Matsumoto T, Ohta T, Yoshikawa M, Ogawa K, Kashiwazaki E, Matsuda H (2014) Structures of acylated sucroses from the flower buds of Prunus mume. J Nat Med 68(3):481–487

    Article  CAS  PubMed  Google Scholar 

  • Fukuyama Y, Sato T, Miura I, Asakawa Y, Takemoto T (1983) Hydropiperoside, a novel coumaryl glycoside from the root of Polygonum hydropiper. Phytochemistry 22(2):549–552

    Article  CAS  Google Scholar 

  • Funnel-Harris DL, O'Neil PM, Sattler SE, Gries T, Berhow MA, Pedersen JF (2017) Response of sorghum stalk pathogens to brown midrib plants and soluble phenolic extracts from near isogenic lines. European J Plant Pathol 148:941–953. https://doi.org/10.1007/s10658-017-1148-2

    Article  CAS  Google Scholar 

  • Georgopoulou C, Aligiannis N, Mitaku NF, Sofia (2005) Acretoside, a new sucrose ester from Aristolochia cretica. Nat Prod Res 7(6):799–803

    Google Scholar 

  • Ha DT, Binh BT, Thu NT, Thu NTB, Tung PHT, Oh WK (2019) Four new compounds isolated from the aerial part of Belamcanda chinensis (L.) and their effect on vascular smooth muscle cell (VSMC) proliferation. Chem Pharm Bull 67(1):41–46

    Article  CAS  Google Scholar 

  • Hamburger M, Hostettmann K (1985) Hydroxycinnamic acid esters from Polygala chamaebuxus. Phytochemistry 24(8):1793–1797

    Article  CAS  Google Scholar 

  • Handrick V, Robert CAM, Ahern KR, Zhou S, Machado RAR, Maag D, Glauser G, Fernandez-Penny FE, Chandran JN, Rodgers-Melnik E, Schneider B, Buckler ES, Boland W, Gershenzon J, Jander G, Erb M, Kollner TG (2016) Biosynthesis of 8-O-methylated benzoxazinoid defense compounds in maize. Plant Cell 28(7):1682–1700. https://doi.org/10.1105/tpc.16.00065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison LJ, Sia GL, Sim KY, Tan TW, Connolly JD, Lavaud C, Massiot G (1995) A ferulic acid ester of sucrose and other constituents of Bhesa paniculata. Phytochemistry 38(6):1497–1500

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Liu M, Liu P, Guo DH, Wei RB, Rahman K (2011) Possible mechanism of the antidepressant effect of 3,6’-disinapoyl sucrose from Polygala tenuifolia Willd. J Pharm Pharmacol 63(6):869–874. https://doi.org/10.1111/j.2042-7158.2011.01281.x

    Article  CAS  PubMed  Google Scholar 

  • Hua J, Qi J, Yu BY (2014) Iridoid and phenylpropanoid glycosides from Scrophularia ningpoensis Hemsl. and their α-glucosidase inhibitory activities. Fitoterapia 93(3):67–73. https://doi.org/10.1016/j.fitote.2013.11.011

    Article  CAS  PubMed  Google Scholar 

  • Ikeya Y, Sugama K, Okada M, Mitsuhashi H (1991) Four new phenolic glycosides from Polygala tenuifolia. Chem Pharm Bull 39(10):2600–2605

    Article  CAS  Google Scholar 

  • Ikeya Y, Sugama K, Maruno M (1994) Xanthone C-glycoside and acylated sugar from Polygala tenuifolia. Chem Pharm Bull 42(11):2305–2308

    Article  CAS  Google Scholar 

  • Kawai Y, Kumagai H, Kurihara H, Yamazaki K, Sawano R, Inoue N (2006) β-Glucosidase inhibitory activities of phenylpropanoid glycosides, vanicoside A and B from Polygonum sachalinense rhizome. Fitoterapia 77(6):456–459

    Article  CAS  PubMed  Google Scholar 

  • Kiem PV, Nhiem NX, Cuong NX, Hoa TQ, Huong HT, Huong LM, Minh CV, Kim YH (2008) New phenylpropanoid esters of sucrose from Polygonum hydropiper and their antioxidant activity. Arch Pharmacal Res 31(11):1477–1482

    Article  CAS  Google Scholar 

  • Kim KH, Chang SW, Lee KR (2010) Feruloyl sucrose derivatives from Bistorta manshuriensis. Can J Chem 88(6):519–523

    Article  CAS  Google Scholar 

  • Kim KH, Kim CS, Park YJ, Moon E, Choi SU, Lee JH, Kim SY, Lee KR (2015) Anti-inflammatory and antitumor phenylpropanoid sucrosides from the seeds of Raphanus sativus. Bioorg Med Chem Lett 25(1):96–99

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi W, Miyase T, Suzuki S, Noguchi H, Chen XM (2000a) Oligosaccharide esters from the roots of Polygala arillata. J Nat Prod 63(8):1066–1069

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi W, Miyase T, Suzuki S, Noguchi H, Chen XM (2000b) Tetrasaccharide multi-esters and xanthone glycosides from the roots of Polygala wattersii. J Nat Prod 63(8):1121–1126

    Article  CAS  PubMed  Google Scholar 

  • Kuo YH, Hsu YW, Liaw CC, Lee JK, Huang HC, Kuo LMY (2005) Cytotoxic phenylpropanoid glycosides from the stems of Smilax china. J Nat Prod 68(10):1475–1478

    Article  CAS  PubMed  Google Scholar 

  • Lepore L, Malafronte N, Condero FB, Gualtieri MJ, Abdo S, Piaz FD, Tommasi ND (2011) Isolation and structural characterization of glycosides from an anti-angiogenic extract of Monnina obtusifolia H.B.K. Fitoterapia 82(2):178–183

    Article  CAS  PubMed  Google Scholar 

  • Li SY, Fuchino H, Kawahara N, Sekita S, Satake M (2002) New phenolic constituents from Smilax bracteata. J Nat Prod 65(3):262–266

    Article  CAS  PubMed  Google Scholar 

  • Li J, Jiang Y, Tu PF (2005) Tricornoses A-L, oligosaccharide multi-esters from the roots of Polygala tricornis. J Nat Prod 68(5):739–744

    Article  CAS  PubMed  Google Scholar 

  • Li HF, Ma QY, Liu YQ, Qian JF, Zhou J, Zhao YX (2009) Chemical constituents from Polygonum perfoliatum. Chin J App Environ Biol 15(05):615–620

    CAS  Google Scholar 

  • Lin M, Zhou LX, He WY, Cheng GF (1998) Shegansu C, a novel phenylpropanoid ester of sucrose from Belamcanda chinensis. J Asian Nat Prod Res 1(1):67–75

    Article  CAS  Google Scholar 

  • Linscheid M, Wendisch D, Strack D (1980) The structures of sinapic acid esters and their metabolism in cotyledons of Raphanus sativus. Ztschrift Für Naturforschung C 35(11–12):907–914

    Article  Google Scholar 

  • Liu P, Hu Y, Guo DH, Wang DX, Tu HH, Ma L, Xie TT, Kong L (2010) Potential antidepressant properties of Radix Polygalae (Yuan Zhi). Phytomedicine 17(10):794–799

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Acker RV, Voorend W, Pallidis A, Goeminne G, Pollier J, Morreel K, Kim H, MuylleH, Bosio M, Ralph J, Vanholme R, Boerjan W (2020) Rewired phenolic metabolism and improved saccharification efficiency of a Zea mays cinnamyl alcohol dehydrogenase 2 (zmcad2) mutant. The Plant Journal. Online ahead of print. https://doi.org/10.1111/tpj.15108

  • Lou HX, Li X, Zhu TR, Li W (1993) Sinapic acid esters and a phenolic glycoside from Cynanchum hancockianum. Phytochemistry 32(5):1283–1286

    Article  CAS  Google Scholar 

  • Masum MN, Choodej S, Yamauchi K, Mitsunaga T (2019) Isolation of phenylpropanoid sucrose esters from the roots of Persicaria orientalis and their potential as inhibitors of melanogenesis. Med Chem Res 28(5):623–632

    Article  CAS  Google Scholar 

  • Miehls LN, Handrick V, Glauser G, Barbier H, Kaur H, Haribal MM, Lipka AE, Gershenzon J, Buckler ES, Erb M, Kollner TG, Jander G (2013) Natural variation in maize aphid resistance is associated with 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one glucoside methyltransferase acitivity. Plant Cell 25(6):2341–2355. https://doi.org/10.1105/tpc.113.112409

    Article  CAS  Google Scholar 

  • Miyase T, Noguchi H, Chen XM (1999) Sucrose esters and xanthone C-glycosides from the roots of Polygala sibirica. J Nat Prod 62(7):993–996

    Article  CAS  PubMed  Google Scholar 

  • Murray AF, Palatini K, Komarnytsky S, Gianfagna TJ, Munafo JP (2019) Phenylpropanoid glycerol glucosides attenuate glucose production in hepatocytes. ACS Omega 4(6):10670–10676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakano K, Murakami K, Takaishi Y, Tomimatsu T (1986) Feruloyl sucrose derivatives from Heloniopsis orientalis. Chem Pharm Bull 34(12):5005–5010

    CAS  Google Scholar 

  • Nhiem NX, Kiem PV, Minh CV, Ban NK, Cuong NX, Tai BH, Kim YH (2009) Phenylpropanoid glycosides from Heterosmilax erythrantha and their antioxidant activity. Arch Pharmacal Res 32(10):1373–1377

    Article  CAS  Google Scholar 

  • Oliveira PES, Conserva LM, Lemos RPL (2008) Chemical constituents from Triplaris americana L. (Polygonaceae). Biochem Syst Ecol 36(2):134–137

    Article  CAS  Google Scholar 

  • Ono M, Takamura C, Sugita F, Masuoka C, Yoshimitsu H, Ikeda T, Nohara T (2007) Two new steroid glycosides and a new sesquiterpenoid glycoside from the underground parts of Trillium kamtschaticum. Chem Pharm Bull 55(4):551–556

    Article  CAS  Google Scholar 

  • Panda P, Appalashetti M, Judeh ZMA (2011) Phenylpropanoid sucrose esters: plant-derived natural products as potential leads for new therapeutics. Curr Med Chem 18(21):3234–3251. https://doi.org/10.2174/092986711796391589

    Article  CAS  PubMed  Google Scholar 

  • Panda P, Appalashetti M, Natarajan M, Chan-Park MB, Venkatraman SS, Judeh ZMA (2012a) Synthesis and antitumor activity of lapathoside D and its analogs. Eur J Med Chem 53:1–12. https://doi.org/10.1016/j.ejmech.2012.02.032

    Article  CAS  PubMed  Google Scholar 

  • Panda P, Appalashetti M, Natarajan M, Mary CP, Venkatraman SS, Judeh ZMA (2012b) Synthesis and antiproliferative activity of helonioside A, 3′,4′,6′-tri-O-feruloylsucrose, lapathoside C and their analogs. Eur J Med Chem 58:418–430. https://doi.org/10.1016/j.ejmech.2012.10.034

    Article  CAS  PubMed  Google Scholar 

  • Ponts N, Pinson-GAdais L, Boutigny AL, Barreau C, Richard-Forget F (2011) Cinnamic-derived acids significantly affect Fusarium graminearum growth and in vitro synthesis of type B trichothecenes. Phytopathology 101(8):299–934. https://doi.org/10.1094/PHYTO-09-10-0230

    Article  CAS  Google Scholar 

  • Quang TH, Cong PT, Yen DTH, Nhiem NX, Tai BH, Yen PH, Ngan NTT, Kim DC, Kim YC, Oh H, Minh CV, Kiem PV (2018) Triterpenoid saponins and phenylpropanoid glycosides from the roots of Polygala japonica Houtt. with anti-inflammatory activity. Phytochem Lett 24:60–66

    Article  CAS  Google Scholar 

  • Quang TH, Yen DTH, Dung DT, Trang DT, Ngan NTT, Kiem PV, Minh CV (2019) Anti-inflammatory phenylpropanoid glycosides from the roots of Polygala aureocauda Dunn. Vietnam J Chem 57(5):525–530

    Article  CAS  Google Scholar 

  • Reem NT, Pogorelko G, Lionetti V, Chambers L, Held MH, Bellincampi D, Zabotina OA (2016) Decreased polysaccharid feruloylation compromises plant cell wall integrity and increases susceptibility to necrotrophic fungal pathognes. Front Plant Sci 7:630. https://doi.org/10.3389/fpls.2016.00630

    Article  PubMed  PubMed Central  Google Scholar 

  • Rice B (2009) Polygonum cuspidatum. [Photograph] CalPhotos. https://calphotos.berkeley.edu/cgi/img_query?seq_n=283423&one=T

  • Ryu B, Kim HM, Lee JS, Cho YJ, Oh MS, Choi JH, Jang DS (2015) Sesquiterpenes from the rhizome of Cyperus rotundus with cytotoxicity on human cancer cells in vitro. Planta Medica 98 (10): 1372-1380. https://doi.org/10.1055/s-0035-1565438.

    CAS  Google Scholar 

  • Saitoh H, Miyase T, Ueno A (1994) Reinioses A-J, Oligosaccharide multi-esters from the roots of Polygala reinii FR. et SAV. Chem Pharm Bull 42(9):1879–1885

    Article  CAS  Google Scholar 

  • Sandjo LP, Nascimento MVPDS, Moraes MdH, Rodrigues LM, Dalmarco EM, Biavatti MW, Steindel M (2019) NOx-, IL-1β-, TNF-α-, and IL-6-inhibiting effects and trypanocidal activity of banana (Musa acuminata) bracts and flowers: UPLC-HRESI-MS detection of phenylpropanoid sucrose esters. Molecules 24(24):4564

    Article  CAS  PubMed Central  Google Scholar 

  • Sang SM, Lao A, Wang HC, Chen ZL, Uzawa J, Fujimoto Y (1998) A phenylpropanoid glycoside from Vaccaria segetalis. Phytochemistry 48(3):569–571

    Article  CAS  Google Scholar 

  • Sashida Y, Ori K, Mimaki Y (1991) Studies on the chemical constituents of the bulbs of Lilium mackliniae. Chem Pharm Bull 39(9):2362–2368

    Article  CAS  Google Scholar 

  • Schilmiller AL, Charbonneau AL, Last RL (2012) Identification of a BAHD acetyl transferase that produces protective acyl sugars in tomato trichomes. Proc Nat Acad Sci United States of America 109(40):16377–16382. https://doi.org/10.1073/pnas.1207906109

    Article  Google Scholar 

  • Seikou N, Katsuyoshi F, Takahiro M, Tomoe O, Keiko O, Haruka T, Hisashi M, Masayuki Y (2013) Structures of acylated sucroses and an acylated flavonol glycoside and inhibitory effects of constituents on aldose reductase from the flower buds of Prunus mume. J Nat Med 67(4):799–806

    Article  CAS  Google Scholar 

  • She GM, Ba YY, Liu Y, Lv H, Shi RB (2011) Absorbable phenylpropenoyl sucroses from Polygala tenuifolia. Molecules 16(7):5507–5513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimazaki N, Mimaki Y, Sashida Y (1991) Prunasin and acetylated phenylpropanoic acid sucrose esters, bitter principles from the fruits of Prunus jamasakura and P. maximowiczii. Phytochemistry 30(5):1475–1480

    Article  CAS  Google Scholar 

  • Shimomura H, Sashida Y, Mimaki Y (1986) Bitter phenylpropanoid glycosides from Lilium speciosum var. rubrum. Phytochemistry 25(12):2897–2899

    Article  CAS  Google Scholar 

  • Shimomura H, Sashida Y, Mimaki Y, Iitaka Y (1988) Studies on the chemical constituents of Lilium henryi BAKER. Chem Pharm Bull 36(7):2430–2446

    Article  CAS  Google Scholar 

  • Shirota O, Sekita S, Satake M, Ni Y, Wei YH (1996) Chemical constituents of chinese folk medicine “Sân Léng”, Sparganium stoloniferum. J Nat Prod 59(3):242–245

    Article  CAS  Google Scholar 

  • Shirota O, Sekita S, Satake M (1997) Two phenylpropanoid glycosides from Sparganium stoloniferum. Phytochemistry 44(4):695–698

    Article  CAS  Google Scholar 

  • Shoyama Y, Hatano K, Nishioka I, Yamagishi T (1987) Phenolic glycosides from Lilium longiflorum. Phytochemistry 26(11):2965–2968

    Article  CAS  Google Scholar 

  • Sim Y, Choi JG, Gu PS, Ryu B, Oh MS (2016) Identification of neuroactive constituents of the ethyl acetate fraction from Cyperi Rhizoma using bioactivity-guided fractionation. Biomol Ther 24(4):438–445

    Article  CAS  Google Scholar 

  • Stoughton T (2008) Raphanus sativus; Cultivated Radish. [Photograph] CalPhotos. https://calphotos.berkeley.edu/cgi/img_query?seq_num=248394&one=T

  • Sun XZ, Zimmermann ML, Campagne JM, Sneden AT (2000) New sucrose phenylpropanoid esters from Polygonum perfoliatum. J Nat Prod 63(8):1094–1097

    Article  CAS  PubMed  Google Scholar 

  • Sun TT, Zhang DW, Han Y, Dong FY (2012) Smilasides M and N, two new phenylpropanoid glycosides from Smilax riparia. J Asian Nat Prod Res 14(2):165–170

    Article  CAS  PubMed  Google Scholar 

  • Takasaki M, Konoshima T, Kuroki S, Tokuda H, Nishino H (2001a) Cancer chemopreventive activity of phenylpropanoid esters of sucrose, vanicoside B and lapathoside A, from Polygonum lapathifolium. Cancer Lett 173(2):133–138

    Article  CAS  PubMed  Google Scholar 

  • Takasaki M, Kuroki S, Kozuka M, Konoshima T (2001b) New phenylpropanoid esters of sucrose from Polygonum lapathifolium. J Nat Prod 64(10):1305–1308

    Article  CAS  PubMed  Google Scholar 

  • Taskova RM, Kokubun T, Ryan KG, Garnock Jones PJ, Jensen SR (2010) Phenylethanoid and iridoid glycosides in the New Zealand snow hebes (Veronica, Plantaginaceae). ChemInform 58(5):703–711

    CAS  Google Scholar 

  • Tommasi ND, Piacente S, Simone FD, Pizza C (1993) New sucrose derivatives from the bark of Securidaca longipedunculata. J Nat Prod 56(1):134–137

    Article  PubMed  Google Scholar 

  • Tu HH, Liu P, Mu L, Liao HB, Xie TT, Ma LH, Liu YM (2008) Study on antidepressant components of sucrose ester from Polygala tenuifolia. China J Chin Mater Med 33(11):1278–1280

    CAS  Google Scholar 

  • Voekler TK (2010) Zea mays; Grain Maize. [Photograph] CalPhotos. https://calphotos.berkeley.edu/cgi/img_query?seq_num=335005&one=T

  • Wang MF, Shao Y, Li JG, Zhu NQ, Ho CT (1999) Antioxidative phenolic glycosides from Sage (Salvia officinalis). J Nat Prod 62(3):454–456

    Article  CAS  PubMed  Google Scholar 

  • Wang NL, Yao XS, Ishii R, Kitanaka S (2003) Bioactive sucrose esters from Bidens parviflora. Phytochemistry 62(5):741–746

    Article  CAS  PubMed  Google Scholar 

  • Wang KJ, Zhang YJ, Yang CR (2005) Antioxidant phenolic constituents from Fagopyrum dibotrys. J Ethnopharmacol 99(2):259–264

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Gao WY, Zhang TJ, Guo YQ (2007) A novel phenylpropanoid glycosides and a new derivation of phenolic glycoside from Paris polyphylla var. yunnanensis. Chin Chem Lett 18(005):548–550

    Article  CAS  Google Scholar 

  • Wang P, Li SY, Ownby S, Zhang ZZ, Yuan W, Zhang WL, Beasley RS (2009) Ecdysteroids and a sucrose phenylpropanoid ester from Froelichia floridana. Phytochemistry 70(3):430–436

    Article  CAS  PubMed  Google Scholar 

  • Wu JF, Chen SB, Chen SL, Tu PF (2007) The chemical constituents of Polygala hongkongensis Hemsl. Yao Xue Xue Bao 42(7):757–761

    CAS  PubMed  Google Scholar 

  • Xiong Y, Deng KZ, Guo YQ, Gao WY, Zhang TJ (2008) Two new sucrose esters from Sparganium stoloniferum. J Asian Nat Prod Res 10(5):425–428

    Article  CAS  PubMed  Google Scholar 

  • Xiong Y, Deng KZ, Guo YQ, Gao WY, Zhang TJ (2009) New chemical constituents from the rhizomes of Sparganium stoloniferum. Arch Pharmacal Res 32(5):717–720

    Article  CAS  Google Scholar 

  • Yan LL, Gao WY, Zhang YJ, Wang Y (2008) A new phenylpropanoid glycosides from Paris polyphylla var. yunnanensis. Fitoterapia 79(4):306–307

    Article  CAS  PubMed  Google Scholar 

  • Yang LX, Su DY, Chang X, Foster CSP, Sun LH, Huang CH, Zhou XF, Zeng LP, Ma H, Zhong BJ (2020) Phylogenomic insights into deep phylogeny of angiosperms based on broad nuclear gene sampling. Plant Commun 1(2):100027. https://doi.org/10.1016/j.xplc.2020.100027

    Article  PubMed  PubMed Central  Google Scholar 

  • Yaser G, Afaf MAB, Khaled MM, Faten MD (2006) Phenylpropanoid and phenylethanoid derivatives from Kigelia pinnata DC. fruits. Nat Prod Res 20(10):935–939

    Article  CAS  Google Scholar 

  • Yoshinari K, Sashida Y, Mimaki Y, Shimomura H (1990) New polyacylated sucrose derivatives from the bark of Prunus padus. Chem Pharm Bull 38(2):415–417

    Article  CAS  Google Scholar 

  • Yun YS, Satake M, Katsuki S, Kunugi A (2004) Phenylpropanoid derivatives from edible canna, Canna edulis. Phytochemistry 65(14):2167–2171

    Article  PubMed  CAS  Google Scholar 

  • Zhang DM, Miyase T, Kuroyanagi M, Umehara K, Noguchi H (1998) Oligosaccharide polyesters from roots of Polygala glomerata. Phytochemistry 47(1):45–52

    Article  CAS  PubMed  Google Scholar 

  • Zhang LJ, Liao CC, Huang HC, Shen YC, Yang LM, Kuo YH (2008) Antioxidant phenylpropanoid glycosides from Smilax bracteata. Phytochemistry 69(6):1398–1404. https://doi.org/10.1016/j.phytochem.2008.01.002

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Feng C, Zheng Y, Wang J, Wang F (2020) Root exudates metabolic profiling suggests distinct defense mechanisms between resistant and susceptible tobacco cultivars against black shank disease. Front Plant Sci 11: 559775. https://doi.org/10.3389/fpls.2020.559775

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao W, Huang XX, Yu LH, Liu QB, Li LZ, Sun Q, Song SJ (2014) Tomensides A-D, new antiproliferative phenylpropanoid sucrose esters from Prunus tomentosa leaves. Bioorg Med Chem Lett 24(11):2459–2462

    Article  CAS  PubMed  Google Scholar 

  • Zheng CJ, Hu CL, Ma XQ, Peng C, Zhang H, Qin LP (2012) Cytotoxic phenylpropanoid glycosides from Fagopyrum tataricum (L.) Gaertn. Food Chem 132(1):433–438

    Article  CAS  PubMed  Google Scholar 

  • Zhong A (2017) Polygala tenuifolia Willd. ChemFaces. http://www.chemfaces.com/direct/Polygala-tenuifolia-Willd-20090.html

  • Zhou S, Kremling KA, Bandillo N, Richter A, Zhang YK, Ahern KR, Artyukhin AB, Hui JX, Younkin GC, Schroeder FC, Buckler ES, Jander G (2019a) Metabolome-scale genome-wide association studies reveal chemical diversity and genetic control of maize specialized metabolites. Plant Cell 31(5):937–955. https://doi.org/10.1105/tpc.18.00772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou S, Zhang YK, Kremling KA, Ding Y, Bennett JS, Bae JS, Kim DK, Ackerman HH, Kolomiets MV, Schmelz EA, Schroeder FC, Buckler ES, Jander G (2019b) Ethylene signaling regulates natural variation in the abundance of antifungal acetylated diferuloylsucroses and Fusarium graminearum resistance in maize seedling roots. New Phytol 221(4):2096–2111. https://doi.org/10.1111/nph.15520

    Article  CAS  PubMed  Google Scholar 

  • Zhu JJ, Zhang CF, Zhang M, Wang ZT (2006) Studies on chemical constituents in roots of Rumex dentatus. China J Chin Mater Med 31(20):1691–1693

    CAS  Google Scholar 

  • Zimmermann ML, Sneden AT (1994) Vanicosides A and B, protein kinase C inhibitors from Polygonum pensylvanicum. J Nat Prod 57(2):236–242. https://doi.org/10.1021/np50104a007

    Article  CAS  PubMed  Google Scholar 

  • Zong Q, Xiong Y, Deng KZ (2018) Two new sucrose esters from the rhizome of Sparganium stoloniferum Buch.-Ham. Nat Prod Res 32(14):1632–1638

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Youth Program of National Natural Science Foundation of China (Award 32000229 to S.Z.), Shenzhen Peacock Plan (KQTD20180411143628272), and the U.S. National Science Foundation (Award IOS-2019516 to G.J.). W.L. and S.Z. were supported by the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences.

Funding

This work was supported by the Youth Program of National Natural Science Foundation of China (award 32000229 to S.Z.), Shenzhen Peacock Plan (KQTD20180411143628272), and the U.S. National Science Foundation (award IOS-2019516 to G.J.). W.L. and S.Z. were supported by the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences.

Author information

Authors and Affiliations

Authors

Contributions

RD and SZ summarized literature and published data, and performed re-analyses. All authors collaboratively drafted the manuscript.

Corresponding author

Correspondence to Shaoqun Zhou.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal opportunity provider and employer.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 73 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, R., Li, W., Berhow, M.A. et al. Phenolic sucrose esters: evolution, regulation, biosynthesis, and biological functions. Plant Mol Biol 109, 369–383 (2022). https://doi.org/10.1007/s11103-021-01142-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-021-01142-y

Keywords

Navigation