Skip to main content

Advertisement

Log in

Association genetics of the parameters related to nitrogen use efficiency in Brassica juncea L.

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

Genome wide association studies allowed prediction of 17 candidate genes for association with nitrogen use efficiency. Novel information obtained may provide better understanding of genomic controls underlying germplasm variations for this trait in Indian mustard.

Abstract

Nitrogen use efficiency (NUE) of Indian mustard (Brassica juncea (L.) Czern & Coss.) is low and most breeding efforts to combine NUE with crop performance have not succeeded. Underlying genetics also remain unexplored. We tested 92 SNP-genotyped inbred lines for yield component traits, N uptake efficiency (NUPEFF), nitrogen utilization efficiency (NUTEFF), nitrogen harvest index (NHI) and NUE for two years at two nitrogen doses (No without added N and N100 added @100 kg/ha). Genotypes IC-2489-88, M-633, MCP-632, HUJM 1080, GR-325 and DJ-65 recorded high NUE at low N. These also showed improved crop performance under high N. One determinate mustard genotype DJ-113 DT-3 revealed maximum NUTEFF. Genome wide association studies (GWAS) facilitated recognition of 17 quantitative trait loci (QTLs). Environment specificity was high. B-genome chromosomes (B02, B03, B05, B07 and B08) harbored many useful loci. We also used regional association mapping (RAM) to supplement results from GWAS. Annotation of the genomic regions around peak SNPs helped to predict several gene candidates for root architecture, N uptake, assimilation and remobilization. CAT9 (At1g05940) was consistently envisaged for both NUE and NUPEFF. Major N transporter genes, NRT1.8 and NRT3.1 were predicted for explaining variation for NUTEFF and NUPEFF, respectively. Most significant amino acid transporter gene, AAP1 appeared associated with NUE under limited N conditions. All these candidates were predicted in the regions of high linkage disequilibrium. Sequence information of the predicted candidate genes will permit development of molecular markers to aid breeding for high NUE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Short sequencing datasets have been deposited at the Sequence Read Archive (SRA) of NCBI under submission accession number PRJNA639209. Supply of germplasm resources will require approval of Biodiversity Authority of India.

References

  • Avice JC, Etienne P (2014) Leaf senescence and nitrogen remobilization efficiency in oilseed rape (Brassica napus L.). J Exp Bot 65:3813–3824

    PubMed  Google Scholar 

  • Bi YM, Kant S, Clark J, Gidda S, Ming F, Xu J et al (2009) Increased nitrogen-use efficiency in transgenic rice plants over-expressing a nitrogen-responsive early nodulin gene identified from rice expression profiling. Plant Cell Environ 32:1749–1760

    CAS  PubMed  Google Scholar 

  • Bordes J, Ravel C, Jaubertie JP, Duperrier B, Gardet O, Heumez E, Pissavy AL, Charmet G, Le Gouis J, Balfourier F (2013) Genomic regions associated with the nitrogen limitation response revealed in a global wheat core collection. Theor Appl Genet 126:805–822

    CAS  PubMed  Google Scholar 

  • Bouchet AS, Laperche A, Bissuel-Belaygue C, Snowdon R, Nesi N, Stahl A (2016) Nitrogen use efficiency in rapeseed: A review. Agron Sustain Dev 36:38

    Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) Software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635. doi:https://doi.org/10.1093/bioinformatics/btm308

    Article  CAS  PubMed  Google Scholar 

  • Browning SR, Browning BL (2007) Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am J Hum Genet 81:1084–1097

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bruex A, Kainkaryam RM, Wieckowski Y, Kang YH, Bernhardt C, Xia Y et al (2012) A gene regulatory network for root epidermis cell differentiation in Arabidopsis. PLOS Genetics 8:e1002446

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brugiere N, Dubois F, Masclaux C, Sangwan RS, Hirel B (2000) Immunolocalization of glutamine synthetase in senescing tobacco (Nicotiana tabacum L.) leaves suggests that ammonia assimilation is progressively shifted to the mesophyll cytosol. Planta 211:519–527

    CAS  PubMed  Google Scholar 

  • Chamorro AM, Tamagno LN, Bezus R, Sarandon SJ (2002) Nitrogen accumulation, partition and nitrogen use efficiency in canola under different nitrogen availabilities. Commun Soil Sci Plan 33:493–504

    CAS  Google Scholar 

  • Chen LS, Bush DR (1997) LHT1, a lysine- and histidine-specific amino acid transporter in Arabidopsis. Plant Physiol 115:1127–1134

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Cui Z, Fan M, Vitousek P, Zhao M, Ma W, Wang Z, Zhang W, Yan X, Yang J, Deng X, Gao Q et al (2014) Producing more grain with lower environmental costs. Nature 514:486–489

    CAS  PubMed  Google Scholar 

  • Chiba A, Ishida H, Nishizawa NK, Makino A, Mae T (2003) Exclusion of ribulose-1,5-bisphosphate carboxylase/oxygenase from chloroplasts by specific bodies in naturally-senescing leaves of wheat. Plant Cell Physiol 44:914–921

    CAS  PubMed  Google Scholar 

  • Cormier F, Le Gouis J, Dubreuil P, Lafarge S, Praud S (2014) A genome-wide identification of chromosomal regions determining nitrogen use efficiency components in wheat (Triticum aestivum L.). Theor Appl Genet 127:2679–2693

    CAS  PubMed  Google Scholar 

  • Crawford NM, Forde BG (2002) Molecular and developmental biology of inorganic nitrogen nutrition. Arabidopsis Book 1:e0011

    PubMed  PubMed Central  Google Scholar 

  • Dechorgnat J, Nguyen CT, Armengaud P, Jossier M, Diatloff E, Filleur S, Daniel-Vedele F (2011) From the soil to the seeds: The long journey of nitrate in plants. J Exp Bot 62:1349–1359

    CAS  PubMed  Google Scholar 

  • Diaz C, Lemaitre T, Christ A, Azzopardi M, Kato Y, Sato F et al (2008) Nitrogen recycling and remobilization are differentially controlled by leaf senescence and development stage in Arabidopsis under low nitrogen nutrition. Plant Physiol 147:1437–1449

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Duitama J, Quintero JC, Cruz DF et al (2014) An integrated framework for discovery and genotyping of genomic variants from high-throughput sequencing experiments. Nucleic Acids Res 42:e44

    PubMed  PubMed Central  Google Scholar 

  • Edwards D, Batley J, Snowdon RJ (2013) Accessing complex crop genomes with next-generation sequencing. Theor Appl Genet 126:1–11

    CAS  PubMed  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES et al (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLOS ONE 6:e19379

    CAS  PubMed  PubMed Central  Google Scholar 

  • Faes P, Deleu C, Ainouche A, Le Caherec F, Montes E, Clouet V, Gouraud AM, Albert B, Orsel M, Lassalle G, Leport L, Bouchereau A, Niogret MF (2015) Molecular evolution and transcriptional regulation of the oilseed rape proline dehydrogenase genes suggest distinct roles of proline catabolism during development. Planta 241:403–419

    CAS  PubMed  Google Scholar 

  • Fan X, Naz M, Fan X, Xuan W, Miller AJ, Xu G (2017) Plant nitrate transporters: from gene function to application. J Exp Bot 68:2463–2475

    CAS  PubMed  Google Scholar 

  • Feller U, Anders I, Mae T (2008) Rubisco lytics: fate of Rubisco after its enzymatic function in a cell is terminated. J Exp Bot 59:1615–1624

    CAS  PubMed  Google Scholar 

  • Fontaine JX, Ravel C, Pageau K, Heumez E, Dubois F, Hirel B, Le Gouis J (2009) A quantitative genetic study for elucidating the contribution of glutamine synthetase, glutamate dehydrogenase and other nitrogen-related physiological traits to the agronomic performance of common wheat. Theor Appl Genet 119:645–662

    CAS  PubMed  Google Scholar 

  • Fuchsberger C, Abecasis GR, Hinds DA (2015) minimac2: faster genotype imputation. Bioinformatics 31(5):782–784. doi:https://doi.org/10.1093/bioinformatics/btu704

    Article  CAS  PubMed  Google Scholar 

  • Gallais A, Coque M (2005) Genetic variation and selection for nitrogen use efficiency in maize: a synthesis. Maydica 50:531

    Google Scholar 

  • Gallais A, Hirel B (2004) An approach to the genetics of nitrogen use efficiency in maize. J Exp Bot 55:295–306

    CAS  PubMed  Google Scholar 

  • Ganeteg U, Ahmad I, Jamtgard S, Aguetoni-Cambui C, Inselsbacher E, Svennerstam H, Schmidt S, Nasholm T (2017) Amino acid transporter mutants of Arabidopsis provides evidence that a non-mycorrhizal plant acquires organic nitrogen from agricultural soil. Plant Cell Environ 40:413–423

    CAS  PubMed  Google Scholar 

  • Garcia-Ferris C, Moreno J (1994) Oxidative modification and breakdown of ribulose-1, 5-bisphosphate carboxylase/oxygenase induced in Euglena gracitis by nitrogen starvation. Planta 193:208–215

    CAS  Google Scholar 

  • Glass ADM (2009) Nitrate uptake by plant roots. Botany 87:659

    CAS  Google Scholar 

  • Good AG, Beatty PH (2011) Fertilizing nature: a tragedy of excess in the commons. PLOS Biology 9:e1001124

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gotz S, García-Gómez JM, Terol J et al (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36:3420–3435

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guiboileau A, Yoshimoto K, Soulay F, Bataille MP, Avice JC, Masclaux-Daubresse C (2012) Autophagy machinery controls nitrogen remobilization at the whole‐plant level under both limiting and ample nitrate conditions in Arabidopsis. New Phytol 194:732–740

    CAS  PubMed  Google Scholar 

  • Gupta S, Akhatar J, Kaur P, Sharma A, Sharma P, Mittal M, Bharti B, Banga SS (2019) Genetic analyses of nitrogen assimilation enzymes in Brassica juncea (L.) Czern & Coss. Mol Biol Rep 46(4):4235–4244. https://doi.org/10.1007/s11033-019-04878-5

    Article  CAS  PubMed  Google Scholar 

  • Habash DZ, Massiah AJ, Rong HL, Wallsgrove RM, Leigh RA (2001) The role of cytosolic glutamine synthetase in wheat. Ann Appl Biol 138:83–89

    CAS  Google Scholar 

  • Han Y, Xin M, Hunag K, Xu Y, Liu Z, Hu Z, Yao Y, Peng H, Ni Z, Sun Q (2016) Altered expression of TaRSL4 gene by genome interplay shapes root hair length in allopolyploid wheat. New Phytol 209:721–732

    CAS  PubMed  Google Scholar 

  • Hao QN, Zhou XA, Sha AH, Wang C, Zhou R, Chen SL (2011) Identification of genes associated with nitrogen use efficiency by genome-wide transcriptional analysis of two soybean genotypes. BMC Genom 12:525

    CAS  Google Scholar 

  • He H, Yang R, Li Y, Ma A, Cao L, Wu X, Chen B, Tian H, Gao Y (2017) Genotypic variation in nitrogen utilization efficiency of oilseed rape (Brassica napus) under contrasting N supply in pot and field experiments. Front Plant Sci 8:1825

    PubMed  PubMed Central  Google Scholar 

  • Hirner A, Ladwig F, Stransky H, Okumoto S, Keinath M, Harms A, Frommer WB, Koch W (2006) Arabidopsis LHT1 is a high-affinity transporter for cellular amino acid uptake in both root epidermis and leaf mesophyll. Plant Cell 18:1931–1946

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang XH, Han B (2014) Natural variations and genome-wide association studies in crop plants. Annu Rev Plant Biol 65:531–551

    CAS  PubMed  Google Scholar 

  • Ikeyama Y, Tasaka M, Fukaki H (2010) RLF, a cytochrome b5-like heme/steroid binding domain protein, controls lateral root formation independently of ARF7/19‐mediated auxin signaling in Arabidopsis thaliana. Plant J 62:865–875

    CAS  PubMed  Google Scholar 

  • Ishida H, Yoshimoto K, Izumi M, Reisen D, Yano Y, Makino A, Ohsumi Y, Hanson MR, Mae T (2008) Mobilization of Rubisco and stroma-localized fluorescent proteins of chloroplasts to the vacuole by an ATG gene-dependent autophagic process. Plant Physiol 148:142–155

    CAS  PubMed  PubMed Central  Google Scholar 

  • Izumi M, Wada S, Makino A, Ishida H (2010) The autophagic degradation of chloroplasts via rubisco-containing bodies is specifically linked to leaf carbon status but not nitrogen status in Arabidopsis. Plant Physiol 154:1196–1209

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jan HU, Abbadi A, Lucke S, Nichols RA, Snowdon RJ (2016) Genomic prediction of testcross performance in canola (Brassica napus). PLoS One 11:e0147769

    PubMed  PubMed Central  Google Scholar 

  • Kichey T, Hirel B, Heumez E, Dubois F, Le Gouis J (2007) In winter wheat (Triticum aestivum L.), post-anthesis nitrogen uptake and remobilisation to the grain correlates with agronomic traits and nitrogen physiological markers. Field Crop Res 102:22–32

    Google Scholar 

  • Kjeldahl J (1883) Neue Methode zur Bestimmung des Stickstoffs in organischen K¨orpern. Fresenius’ Zeitschrift für Analytische Chemie 22:366–382

    Google Scholar 

  • Laine P, Ourry A, Boucaud J (1995) Shoot control of nitrate uptake rates by roots of Brassica napus L.: Effects of localized nitrate supply. Planta 1961:77–83

    Google Scholar 

  • Langmead B, Salzberg S (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leleu O, Vuylstecker C, Tetu JF, Degrande D, Champolivier L, Rambour S (2000) Effect of two contrasted N fertilizations on rapeseed growth and nitrate metabolism. Plant Physiol Bioch 38:639–645

    CAS  Google Scholar 

  • Lemaitre T, Gaufichon L, Boutet-Mercey S, Christ A, Masclaux-Daubresse C (2008) Enzymatic and metabolic diagnostic of nitrogen deficiency in Arabidopsis thaliana Wassileskija accession. Plant Cell Physiol 49:1056–1065

    CAS  PubMed  Google Scholar 

  • Leran S, Munos S, Brachet C, Tillard P, Gojon A, Lacombe B (2013) Arabidopsis NRT1.1 is a bidirectional transporter involved in root-to-shoot nitrate translocation. Mol Plant 6:1984–1987

    CAS  PubMed  Google Scholar 

  • Li H, Hu B, Chu C (2017) Nitrogen use efficiency in crops: lessons from Arabidopsis and rice. J Exp Bot 68:2477–2488

    CAS  PubMed  Google Scholar 

  • Li JY, Fu YL, Pike SM, Bao J, Tian W, Zhang Y, Chen CZ, Zhang Y, Li HM, Huang J, Li LG, Schroeder JI, Gassmann W, Gong JM (2010) The Arabidopsis nitrate transporter NRT1. 8 functions in nitrate removal from the xylem sap and mediates cadmium tolerance. Plant Cell 22:1633–1646

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li XP, Zhao XQ, He X, Zhao GY, Li B, Liu DC, Zhang AM, Zhang XY, Tong YP, Li ZS (2011) Haplotype analysis of the genes encoding glutamine synthetase plastic isoforms and their association with nitrogen-use and yield-related traits in bread wheat. New Phytol 189:449–458

    CAS  PubMed  Google Scholar 

  • Lin J, Nazarenus TJ, Frey JL, Liang X, Wilson MA, Stone JM (2011) A plant DJ-1 homolog is essential for Arabidopsis thaliana chloroplast development. PLoS One 6:e23731

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Zhang Y, Han W et al (2013) Enhanced nitrogen deposition over China. Nature 494:459–462

    CAS  PubMed  Google Scholar 

  • Loque D, von Wiren N (2004) Regulatory levels for the transport of ammonium in plant roots. J Exp Bot 55:1293–1305

    CAS  PubMed  Google Scholar 

  • Malagoli P, Laine P, Rossato L, Ourry A (2005) Dynamics of nitrogen uptake and mobilization in field-grown winter oilseed rape (Brassica napus) from stem extension to harvest. Ann Bot 95:853–861

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martin A, Lee J, Kichey T, Gerentes D, Zivy M, Tatout C, Dubois F, Balliau T, Valot B, Davanture M, Terce-Laforgue T (2006) Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production. Plant Cell 18:3252–3274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Masucci JD, Schiefelbein JW (1994) The rhd6 mutation of Arabidopsis thaliana alters root-hair initiation through an auxin-and ethylene-associated process. Plant Physiol 106:1335–1346

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mohammadi M, Blake TK, Budde AD, Chao S, Hayes PM, Horsley RD et al (2015) A genome-wide association study of malting quality across eight U.S. Barley breeding programs. Theor Appl Genet 128:705–721

    CAS  PubMed  Google Scholar 

  • Moll RH, Kamprath EJ, Jackson WA (1982) Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron J 74:562–564

    Google Scholar 

  • Mulvaney RL, Khan SA, Ellsworth TR (2009) Synthetic nitrogen fertilizers deplete soil nitrogen: a global dilemma for sustainable cereal production. J Environ Qual 38:2295–2314

    CAS  PubMed  Google Scholar 

  • Namai S, Toriyama K, Fukuta Y (2009) Genetic variations in dry matter production and physiological nitrogen use efficiency in rice (Oryza sativa L). varieties Breed Sci 59:269–276

    CAS  Google Scholar 

  • Ng JMS, Han M, Beatty PH, Good A (2016) Genes meet gases: the role of plant nutrition and genomics in addressing green-house gas emissions. In: Edwards D, Batley J (eds) Plant Genomics and Climate Change. Springer Publishers, New York, pp 149–172

    Google Scholar 

  • Noh Y, Amasino R (1999) Regulation of developmental senescence is conserved between Arabidopsis and Brassica napus. Plant Mol Biol 41:195–206

    CAS  PubMed  Google Scholar 

  • O’Neill PM, Shanahan JF, Schepers JS, Caldwell B (2004) Agronomic responses of corn hybrids from different eras to deficit and adequate levels of water and nitrogen. Agron J 96:1660–1667

    Google Scholar 

  • Okamoto M, Kumar A, Li W, Wang Y, Siddiqi MY, Crawford NM, Glass AD (2006) High-affinity nitrate transport in roots of Arabidopsis depends on expression of the NAR2-like gene AtNRT31. Plant Physiol 140(3):1036–1046

    CAS  PubMed  PubMed Central  Google Scholar 

  • Orsel M, Moison M, Clouet V, Thomas J, Leprince F, Canoy AS, Just J, Chalhoub B, Masclaux-Daubresse C (2014) Sixteen cytosolic glutamine synthetase genes identified in the Brassica napus L genome are differentially regulated depending on nitrogen regimes and leaf senescence. J Exp Bot 65:3927–3947

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pauli D, Muehlbauer GJ, Smith KP, Cooper B, Hole D, Obert DE et al (2014) Association mapping of agronomic QTLs in US spring barley breeding germplasm. Plant Genome 7:1–15

    Google Scholar 

  • Peng M, Hannam C, Gu H, Bi YM, Rothstein SJ (2007) A mutation in NLA, which encodes a RING-type ubiquitin ligase, disrupts the adaptability of Arabidopsis to nitrogen limitation. Plant J 50:320–337

    CAS  PubMed  Google Scholar 

  • Peoples MB, Dalling MJ (1988) The interplay between proteolysis and amino acid metabolism during senescence and nitrogen reallocation. In: Noodén LD, Leopold AC (eds) Senescence and aging in plants. Academic Press, San Diego, pp 181–217

    Google Scholar 

  • Perchlik M, Foster J, Tegeder M (2014) Different and overlapping functions of Arabidopsis LHT6 and AAP1 transporters in root amino acid uptake. J Exp Bot 65:5193–5204

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Amador MA, Abler ML, De Rocher EJ et al (2000) Identification of BFN1, a bifunctional nuclease induced during leaf and stem senescence in. Arabidopsis Plant Physiol 122:169–180

    CAS  PubMed  Google Scholar 

  • Pratelli R, Pilot G (2014) Regulation of amino acid metabolic enzymes and transporters in plants. J Exp Bot 65:5535–5556

    CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus. genotype data Genetics 155:945–959

    CAS  PubMed  Google Scholar 

  • Prins A, Van Heerden PD, Olmos E, Kunert KJ, Foyer CH (2008) Cysteine proteinases regulate chloroplast protein content and composition in tobacco leaves: a model for dynamic interactions with ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco) vesicular bodies. J Exp Bot 59:1935–1950

    CAS  PubMed  Google Scholar 

  • Quraishi UM, Abrouk M, Murat F, Pont C, Foucrier S, Desmaizieres G, Confolent C et al (2011) Cross-genome map based dissection of a nitrogen use efficiency ortho-meta QTL in bread wheat unravels concerted cereal genome evolution. Plant J 65:745–756

    CAS  PubMed  Google Scholar 

  • R Core Development Team (2013) R: A language and environment for statistical computing; http://www.R-project.org

  • Rafalski JA (2010) Association genetics in crop improvement. Curr Opin Plant Biol 13:174–180

    CAS  PubMed  Google Scholar 

  • Rahman M, McClean P (2013) Genetic analysis on flowering time and root system in Brassica napus. L Crop Sci 53:141

    Google Scholar 

  • Rathke GW, Behrens T, Diepenbrock W (2006) Integrated nitrogen management strategies to improve seed yield, oil content and nitrogen efficiency of winter oilseed rape (Brassica napus L): a review. Agr Ecosyst Environ 117:80–108

    CAS  Google Scholar 

  • Rentsch D, Schmidt S, Tegeder M (2007) Transporters for uptake and allocation of organic nitrogen compounds in plants. FEBS Lett 581:2281–2289

    CAS  PubMed  Google Scholar 

  • Rossato L, Laine P, Ourry A (2001) Nitrogen storage and remobilization in Brassica napus L during the growth cycle: nitrogen fluxes within the plant and changes in soluble protein patterns. J Exp Bot 52:1655–1663

    CAS  PubMed  Google Scholar 

  • Roshyara NR, Scholz M (2014) FC GENE: a versatile tool for processing and transforming SNP datasets. PLOS ONE 9(7):e97589

    PubMed  PubMed Central  Google Scholar 

  • Schjoerring JK, Bock JGH, Gammelvind L, Jensen CR, Mogensen VO (1995) Nitrogen incorporation and remobilization in different shoot components of field-grown winter oilseed rape (Brassica napus L) as affected by rate of nitrogen application and irrigation. Plant Soil 177:255–264

    CAS  Google Scholar 

  • Schulte auf’mErley G, Wijaya KA, Ulas A, Becker H, Wiesler F, Horst WJ (2007) Leaf senescence and N uptake parameters as selection traits for nitrogen efficiency of oilseed rape cultivars. Physiol Plant 130:519–531

    Google Scholar 

  • Sheorana P, Sardana V, Singh S, Kumara A, Manna A, Sharma P (2016) Agronomic and physiological assessment of nitrogen use, uptake and acquisition in sunflower. Int J Plant Prod 10:109–122

    Google Scholar 

  • Snowdon RJ, Abbadi A, Kox T, Schmutzer T, Leckband G (2015) Heterotic haplotype capture: precision breeding for hybrid performance. Trends Plant Sci 20:410–413

    CAS  PubMed  Google Scholar 

  • Soltabayeva A, Srivastava S, Kurmanbayeva A, Bekturova A, Fluhr R, Sagi M (2018) Early senescence in older leaves of low nitrate-grown Atxdh1 uncovers a role for purine catabolism in N supply. Plant Physiol 178:1027–1044

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stitt M, Muller C, Matt P, Gibon Y, Carillo P, Morcuende R et al (2002) Steps towards an integrated view of nitrogen metabolism. J Exp Bot 53:959–970

    CAS  PubMed  Google Scholar 

  • Sun H, Qian Q, Wu K, Luo J, Wang S, Zhang C et al (2014) Heterotrimeric G proteins regulate nitrogen-use efficiency in rice. Nat Genet 46:652–656

    CAS  PubMed  Google Scholar 

  • Svennerstam H, Ganeteg U, Bellini C, Nasholm T (2007) Comprehensive screening of Arabidopsis mutants suggests the lysine histidine transporter 1 to be involved in plant uptake of amino acids. Plant Physiol 143:1853–1860

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sylvester-Bradley R, Kindred DR (2009) Analysing nitrogen responses of cereals to prioritize routes to the improvement of nitrogen use efficiency. J Exp Bot 60:1939–1951

    CAS  PubMed  Google Scholar 

  • Tsay YF, Schroeder JI, Feldmann KA, Crawford NM (1993) The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible. nitrate transporter Cell 72:705–713

    CAS  PubMed  Google Scholar 

  • Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298–1301

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vijayakumar P, Datta S, Dolan L (2016) ROOT HAIR DEFECTIVE SIX-LIKE4 (RSL4) promotes root hair elongation by transcriptionally regulating the expression of genes required for cell growth. New Phytol 212:944–953

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wada S, Ishida H, Izumi M, Yoshimoto K, Ohsumi Y, Mae T, Makino A (2009) Autophagy plays a role in chloroplast degradation during senescence in individually darkened leaves. Plant Physiol 149:885–893

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, Ding G, Li L, Cai H, Ye X, Zou J, Xu F (2014) Identification and characterization of improved nitrogen efficiency in interspecific hybridized new-type Brassica napus. Ann Bot 114:549–559

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H, Stierhof YD, Ludewig U (2015) The putative Cationic Amino Acid Transporter 9 is targeted to vesicles and may be involved in plant amino acid homeostasis. Front Plant Sci 6:212

    PubMed  PubMed Central  Google Scholar 

  • Yang X, Xia X, Zhang Z, Nong B, Zeng Y, Xiong F, Wu Y, Gao J, Deng G, Li D (2017) QTL Mapping by whole genome re-sequencing and analysis of candidate genes for nitrogen use efficiency in rice. Front Plant Sci 8:1634

    PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Tan L, Zhu Z, Yuan L, Xie D, Sun C (2015) TOND1 confers tolerance to nitrogen deficiency in rice. Plant J 81:367–376

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Q, Huang X, Lin Z, Han B (2010) SEG-Map: A novel software for genotype calling and genetic map construction from next generation sequencing Rice 3:98–102

Download references

Acknowledgements

The studies were financially supported by the Department of Biotechnology, Government of India in the form of Centre of Excellence and Innovation in Biotechnology “Germplasm enhancement for crop architecture and defensive traits in Brassica juncea L. Czern. and Coss.” SSB also acknowledges salary support from Indian Council of Agricultural Research under ICAR National Professor Project “Broadening the genetic base of Indian mustard (Brassica juncea) through alien introgressions and germplasm enhancement”.

Author information

Authors and Affiliations

Authors

Contributions

SSB and VKS conceived the project. NG, AG and PG performed phenotypic evaluations. AM and SS conducted biochemical analysis and DNA extractions. MPS and RK compiled the results. JA, NK and BB implemented the statistical and bioinformatics software’s and performed computational analysis. MG and MM carried out annotation studies and wrote the manuscript. SSB edited the manuscript and supervised the studies.

Corresponding author

Correspondence to Surinder S. Banga.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (PDF 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, N., Gupta, M., Akhatar, J. et al. Association genetics of the parameters related to nitrogen use efficiency in Brassica juncea L.. Plant Mol Biol 105, 161–175 (2021). https://doi.org/10.1007/s11103-020-01076-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-020-01076-x

Keywords

Navigation