Skip to main content
Log in

HvWRKY23 regulates flavonoid glycoside and hydroxycinnamic acid amide biosynthetic genes in barley to combat Fusarium head blight

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Crop plant resistance against pathogens is governed by dynamic molecular and biochemical responses driven by complex transcriptional networks. However, the underlying mechanisms are largely unclear. Here we report an interesting role of HvWRKY23 transcription factor (TF) in modulating defense response against Fusarium head blight (FHB) in barley. The combined approach of gene silencing, metabolomics, real time expression analysis and ab initio bioinformatics tools led to the identification of the HvWRKY23 role in FHB resistance. The knock-down of HvWRKY23 gene in the FHB resistant barley genotype CI9831, followed by inoculation with Fusarium graminearum, led to the down regulation of key flavonoid and hydroxycinnamic acid amide biosynthetic genes resulting in reduced accumulation of resistant related (RR) secondary metabolites such as pelargonidin 3-rutinoside, peonidin 3-rhamnoside-5-glucoside, kaempferol 3-O-arabinoside and other flavonoid glycosides. Reduced abundances of RR metabolites in TF silenced plants were also associated with an increased proportion of spikelets diseased and amount of fungal biomass in spikelets, depicting the role of HvWRKY23 in disease resistance. The luciferase reporter assay demonstrated binding of HvWRKY23 protein to promoters of key flavonoid and hydroxycinnamic acid amides (HCAA) biosynthetic genes, such as HvPAL2, HvCHS1, HvHCT, HvLAC15 and HvUDPGT. The accumulation of high abundances of HCAAs and flavonoid glycosides reinforce cell walls to contain the pathogen to initial infection area. This gene in commercial cultivars can be edited, if non-functional, to enhance resistance against FHB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agarwal P, Reddy MP, Chikara J (2011) WRKY: its structure, evolutionary relationship, DNA-binding selectivity, role in stress tolerance and development of plants. Mol Biol Rep 38:3883–3896

    Article  CAS  PubMed  Google Scholar 

  • Ahuja I, Kissen R, Bones AM (2012) Phytoalexins in defense against pathogens. Trends Plant Sci 17:73–90

    Article  CAS  PubMed  Google Scholar 

  • Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406

    Article  CAS  PubMed  Google Scholar 

  • Bollina V, Kumaraswamy GK, Kushalappa AC et al (2010) Mass spectrometry-based metabolomics application to identify quantitative resistance-related metabolites in barley against Fusarium head blight. Mol Plant Pathol 11:769–782

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bollina V, Kushalappa AC, Choo TM et al (2011) Identification of metabolites related to mechanisms of resistance in barley against Fusarium graminearum, based on mass spectrometry. Plant Mol Biol 77:355–370

    Article  CAS  PubMed  Google Scholar 

  • Cakir C, Scofield S (2008) Evaluating the ability of the barley stripe mosaic virus-induced gene silencing system to simultaneously silence two wheat genes. Cereal Res Commun 36:217–222

    Article  CAS  Google Scholar 

  • Castro ED, Sigrist CJA, Gattiker A (2006) ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res 34:W362–W365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chow CN, Zheng HQ, Wu NY et al (2016) PlantPAN 2.0: an update of plant promoter analysis navigator for reconstructing transcriptional regulatory networks in plants. Nucleic Acids Res 44(D1):D1154–D1160

    Article  CAS  PubMed  Google Scholar 

  • Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16(22):10881–10890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dang FF, Wang YN, Yu L et al (2013) CaWRKY40, a WRKY protein of pepper, plays an important role in the regulation of tolerance to heat stress and resistance to Ralstonia solanacearum infection. Plant, Cell Environ 36:757–774

    Article  CAS  Google Scholar 

  • Didi V, Jackson P, Hejátko J (2015) Hormonal regulation of secondary cell wall formation. J Exp Bot 66:5015–5027

    Article  CAS  PubMed  Google Scholar 

  • Ding L, Xu H, Yi H et al (2011) Resistance to hemi-biotrophic F. graminearum infection is associated with coordinated and ordered expression of diverse defense signaling pathways. PLoS ONE 6:e19008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206

    Article  CAS  PubMed  Google Scholar 

  • Foster-Hartnett D, Danesh D, Peñuela S et al (2007) Molecular and cytological responses of Medicago truncatula to Erysiphe pisi. Mol Plant Pathol 8:307–319

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Cox LK Jr, He P (2014) Functions of calcium-dependent protein kinases in plant innate immunity. Plants 3(1):160–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gil-Humanes J, Wang Y, Liang Z et al (2017) High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9. Plant J 89:1251–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González-Lamothe R, Mitchell G, Gattuso M et al (2009) Plant antimicrobial agents and their effects on plant and human pathogens. Int J Mol Sci 10(8):3400–3419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grunewald W, De Smet I, Lewis DR et al (2012) Transcription factor WRKY23 assists auxin distribution patterns during Arabidopsis root development through local control on flavonol biosynthesis. Proc Natl Acad Sci USA 109:1554–1559

    Article  PubMed  PubMed Central  Google Scholar 

  • Gunnaiah R, Kushalappa AC, Duggavathi R et al (2012) Integrated metabolo-proteomic approach to decipher the mechanisms by which wheat qtl (fhb1) contributes to resistance against Fusarium graminearum. PLoS ONE 7:e40695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishihara A, Hashimoto Y, Tanaka C et al (2008) The tryptophan pathway is involved in the defense responses of rice against pathogenic infection via serotonin production. Plant J 54:481–495

    Article  CAS  PubMed  Google Scholar 

  • Jin J, Zhang H, Kong L et al (2014) PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Res 42:D1182–D1187

    Article  CAS  PubMed  Google Scholar 

  • Kage U, Yogendra KN, Kushalappa AC (2017) TaWRKY70 transcription factor in wheat QTL-2DL regulates downstream metabolite biosynthetic genes to resist Fusarium graminearum infection spread within spike. Nat Sci Rep 7:42596

    Article  CAS  Google Scholar 

  • Karre S, Kumar A, Dhokane D, Kushalappa AC (2017) Metabolo-transcriptome profiling of barley reveals induction of chitin elicitor receptor kinase gene (HvCERK1) conferring resistance against Fusarium graminearum. Plant Mol Biol 93(3):247–267

    Article  CAS  PubMed  Google Scholar 

  • Katajamaa M, Orešič M (2005) Processing methods for differential analysis of LC/MS profile data. BMC Bioinform 6:1–12

    Article  CAS  Google Scholar 

  • Katajamaa M, Miettinen J, Orešič M (2006) MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics 22:634–636

    Article  CAS  PubMed  Google Scholar 

  • Kelley LA, Mezulis S, Yates CM et al (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protocols 10:845–858

    Article  CAS  PubMed  Google Scholar 

  • Kosugi S, Hasebe M, Matsumura N et al (2008) Six classes of nuclear localization signals specific to different binding grooves of importin α. J Biol Chem 284(1):478–485

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Karre S, Dhokane D et al (2015) Real-time quantitative PCR based method for the quantification of fungal biomass to discriminate quantitative resistance in barley and wheat genotypes to Fusarium head blight. J Cereal Sci 64:16–22

    Article  CAS  Google Scholar 

  • Kumar A, Yogendra KN, Karre S et al (2016) WAX INDUCER1 (HvWIN1) transcription factor regulates free fatty acid biosynthetic genes to reinforce cuticle to resist Fusarium head blight in barley spikelets. J Exp Bot 67(14):4127–4139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumaraswamy KG, Kushalappa AC, Choo TM et al (2011) Mass spectrometry-based metabolomics to identify potential biomarkers for resistance in barley against Fusarium head blight (Fusarium graminearum). J Chem Ecol 37:846–856

    Article  CAS  PubMed  Google Scholar 

  • Kushalappa AC, Gunnaiah R (2013) Metabolo-proteomics to discover plant biotic stress resistance genes. Trends Plant Sci 18:522–531

    Article  CAS  PubMed  Google Scholar 

  • Kushalappa AC, Yogendra KN, Karre S (2016a) Plant innate immune response: qualitative and quantitative resistance. Crit Rev Plant Sci 35:38–55

    Article  CAS  Google Scholar 

  • Kushalappa AC, Yogendra KN, Sarkar K et al (2016b) Gene discovery and genome editing to develop cisgenic crops with improved resistance against pathogen stress. Can J Plant Pathol. https://doi.org/10.1080/07060661.2016.1199597

    Article  Google Scholar 

  • Lai Z, Vinod K, Zheng Z et al (2008) Roles of arabidopsis WRKY3 and WRKY4 transcription factors in plant responses to pathogens. BMC Plant Biol 8:1–13

    Article  CAS  Google Scholar 

  • Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48:251–275

    Article  CAS  PubMed  Google Scholar 

  • Letunic I, Doerks T, Bork P (2015) SMART: recent updates, new developments and status in 2015. Nucleic Acids Res 43:D257–D260

    Article  CAS  PubMed  Google Scholar 

  • Li J, Brader G, Palva ET (2004) The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 16:319–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative pcr and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lorenc-Kukuła K, Jafra S, Oszmiański J, Szopa J (2005) Ectopic expression of anthocyanin 5-o-glucosyltransferase in potato tuber causes increased resistance to bacteria. J Agric Food Chem 53:272–281

    Article  CAS  PubMed  Google Scholar 

  • Ma M, Yan Y, Huang L et al (2012) Virus-induced gene-silencing in wheat spikes and grains and its application in functional analysis of HMW-GS-encoding genes. BMC Plant Biol 12:141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin JT (1964) Role of cuticle in the defense against plant disease. Annu Rev Phytopathol 2:81–100

    Article  Google Scholar 

  • Masada S, Terasaka K, Oguchi Y et al (2009) Functional and structural characterization of a flavonoid glucoside 1,6-glucosyltransferase from Catharanthus roseus. Plant Cell Physiol 50:1401–1415

    Article  CAS  PubMed  Google Scholar 

  • Mierziak J, Kostyn K, Kulma A (2014) Flavonoids as important molecules of plant interactions with the environment. Molecules 19(10):16240–16265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukhtar MS, Deslandes L, Auriac MC et al (2008) The Arabidopsis transcription factor WRKY27 influences wilt disease symptom development caused by Ralstonia solanacearum. Plant J 56:935–947

    Article  CAS  PubMed  Google Scholar 

  • Munteanu MG, Vlahovicek K, Parthasarathy S et al (1998) Rod models of DNA: sequence-dependent anisotropic elastic modelling of local bending phenomena. Trends Biochem Sci 23:341–347

    Article  CAS  PubMed  Google Scholar 

  • Onkokesung N, Reichelt M, Doorn AV et al (2014) Modulation of flavonoid metabolites in Arabidopsis thaliana through overexpression of the MYB75 transcription factor: role of kaempferol-3,7-dirhamnoside in resistance to the specialist insect herbivore Pieris brassicae. J Exp Bot. https://doi.org/10.1093/jxb/eru096

    Article  PubMed  PubMed Central  Google Scholar 

  • Padmavati M, Sakthivel N, Thara KV, Reddy AR (1997) Differential sensitivity of rice pathogens to growth inhibition by flavonoids. Phytochemistry 46:499–502

    Article  CAS  Google Scholar 

  • Pandey SP, Somssich IE (2009) The role of WRKY transcription factors in plant immunity. Plant Physiol 150:1648–1655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parvez MM, Tomita-Yokotani K, Fujii Y et al (2004) Effects of quercetin and its seven derivatives on the growth of Arabidopsis thaliana and Neurospora crassa. Biochem Syst Ecol 32:631–635

    Article  CAS  Google Scholar 

  • Phukan UJ, Jeena GS, Shukla RK (2016) WRKY transcription factors: molecular regulation and stress responses in plants. Front Plant Sci 7(760):1–14

    Google Scholar 

  • Proctor RH, Hohn TM, McCormick SP (1995) Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene. Mol Plant Microbe Interact 8:593–601

    Article  CAS  PubMed  Google Scholar 

  • Qiu JL, Fiil BK, Petersen K et al (2008) Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus. EMBO J 27:2214–2221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15:247–258

    Article  CAS  PubMed  Google Scholar 

  • Sarowar S, Alam ST, Makandar R, Lee H, Trick HN, Dong Y, Shah J (2018) Targeting the pattern-triggered immunity pathway for enhancing resistance to Fusarium graminearum. Mol Plant Pathol. https://doi.org/10.1111/mpp.12781

    Article  Google Scholar 

  • Schön M, Töller A, Diezel C et al (2013) Analyses of wrky18 wrky40 Plants Reveal Critical Roles of SA/EDS1 Signaling and Indole-Glucosinolate Biosynthesis for Golovinomyces orontii Resistance and a Loss-of Resistance Towards Pseudomonas syringae pv. tomato AvrRPS4. MPMI 26:758–767

    Article  CAS  PubMed  Google Scholar 

  • Scofield SR, Huang L, Brandt AS, Gill BS (2005) Development of a virus-induced gene-silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway. Plant Physiol 138:2165–2173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sudisha J, Sharathchandra RG, Amruthesh KN et al (2012) Pathogenesis related proteins in plant defense response. In: Mérillon MJ, Ramawat GK (eds) Plant defence: biological control. Springer, Dordrecht, pp 379–403

    Chapter  Google Scholar 

  • Tena G, Asai T, Chiu WL, Sheen J (2001) Plant mitogen-activated protein kinase signaling cascades. Curr Opin Plant Biol 4:392–400

    Article  CAS  PubMed  Google Scholar 

  • Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tuszynska I, Magnus M, Jonak K et al (2015) NPDock: a web server for protein–nucleic acid docking. Nucleic Acids Res 43:W245–W430

    Article  CAS  Google Scholar 

  • Vandromme M, Gauthier-Rouvière C, Lamb N, Fernandez A (1996) Regulation of transcription factor localization: fine-tuning of gene expression. Trends Biochem Sci 21:59–64

    Article  CAS  PubMed  Google Scholar 

  • Velasco P, Lema M, Francisco M et al (2013) In vivo and in vitro effects of secondary metabolites against Xanthomonas campestris pv. campestris. Molecules 18(9):11131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Von Arnim AG, Deng XW, Stacey MG (1998) Cloning vectors for the expression of green fluorescent protein fusion proteins in transgenic plants. Gene 221(1):35–43

    Article  Google Scholar 

  • Wang X, Fan C, Zhang X et al (2013) BioVector, a flexible system for gene specific-expression in plants. BMC Plant Biol 13:198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe N, Lam E (2006) Arabidopsis Bax inhibitor-1 functions as an attenuator of biotic and abiotic types of cell death. Plant J 45:884–894

    Article  CAS  PubMed  Google Scholar 

  • Xing DH, Lai ZB, Zheng ZY et al (2008) Stress- and pathogen-induced Arabidopsis WRKY48 is a transcriptional activator that represses plant basal defense. Mol Plant 1:459–470

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Chen C, Fan B, Chen Z (2006) Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. Plant Cell 18:1310–1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi K, Yamada K, Kawasaki T (2013) Receptor-like cytoplasmic kinases are pivotal components in pattern recognition receptor-mediated signaling in plant immunity. Plant Signal Behav 8:e25662

    Article  CAS  PubMed Central  Google Scholar 

  • Ye J, Coulouris G, Zaretskaya I et al (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinform 13:1–11

    Article  Google Scholar 

  • Yogendra KN, Kumar A, Sarkar K et al (2015) Transcription factor StWRKY1 regulates phenylpropanoid metabolites conferring late blight resistance in potato. J Exp Bot 66:7377–7389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: aversatile cell system for transient gene expression analysis. Nat Protoc 2(7):1565–1572

    Article  CAS  PubMed  Google Scholar 

  • Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support of Ministère de l’Agriculture, des Pêcheries et de l’Alimentation du Québec (MAPAQ), Québec, Canada, and Natural Sciences and Engineering Research Council of Canada (NSERC). We also acknowledge Mr. Sripad Joshi, Plant Science Department, McGill University for assisting in protein–ligand docking.

Author information

Authors and Affiliations

Authors

Contributions

SK, conducted the experiment, analyzed the data, wrote the manuscript; YK, helped in luciferase experiment; AK, UK helped in analyzing metabolite data and developing figures; JB, provided guidance and helped to design the molecular work carried in this paper; Ajjamada Kushalappa, conceived the idea, aided in designing the experiment and edited the manuscript.

Corresponding author

Correspondence to Ajjamada Kushalappa.

Ethics declarations

Conflict of interest

Authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1827 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karre, S., Kumar, A., Yogendra, K. et al. HvWRKY23 regulates flavonoid glycoside and hydroxycinnamic acid amide biosynthetic genes in barley to combat Fusarium head blight. Plant Mol Biol 100, 591–605 (2019). https://doi.org/10.1007/s11103-019-00882-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-019-00882-2

Keywords

Navigation