Skip to main content
Log in

Genome-wide analysis of GDSL-type esterases/lipases in Arabidopsis

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

In this present study, we introduce a fundamental framework and provide information regarding the possible roles of GDSL-type esterase/lipase gene family in Arabidopsis.

Abstract

GDSL-type esterases/lipases are hydrolytic enzymes with multifunctional properties such as broad substrate specificity, regiospecificity, and stereoselectivity. In this study, we identified 105 GDSL-type esterase/lipase genes in Arabidopsis thaliana by conducting a comprehensive computational analysis. Expression studies indicated that GDSL-type lipase proteins showed varied expression patterns. Phylogenetic tree analysis indicated that AtGELP (Arabidopsis thaliana GDSL-type esterase/lipase protein) gene family was divided into four clades. The phylogenetic analysis, combined with protein motif architectures, and expression profiling were used to predict the roles AtGELP genes. To investigate the physical roles of the AtGELP gene family, we successfully screened 88 AtGELP T-DNA knockout lines for 54 AtGELP genes from 199 putative SALK T-DNA mutants. Transgenic plants of AtGELP genes were used to elucidate the phenotypic characteristics in various developmental stages or stress conditions. Our results suggest that the AtGELP genes have diverse physical functions such as affecting the germination rate and early growth of seedlings subjected to high concentrations of glucose, or being involved in biotic stress responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akoh CC, Lee GC, Liaw YC, Huang TH, Shaw JF (2004) GDSL family of serine esterases/lipases. Prog Lipid Res 43(6):534–552. doi:10.1016/j.plipres.2004.09.002

    Article  CAS  PubMed  Google Scholar 

  • Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202-208. doi:10.1093/nar/gkp335

    Article  Google Scholar 

  • Beisson F, Gardies AM, Teissere M, Ferte N, Noat G (1997) An esterase neosynthesized in post-germinated sunflower seeds is related to a new family of lipolytic enzymes. Plant Physiol Biochem 35(10):761–765

    CAS  Google Scholar 

  • Chen MX, Du X, Zhu Y, Wang Z, Hua SJ, Li ZL, Guo WL, Zhang GP, Peng JR, Jiang LX (2012) Seed Fatty Acid Reducer acts downstream of gibberellin signalling pathway to lower seed fatty acid storage in Arabidopsis. Plant Cell Environ 35(12):2155–2169

    Article  CAS  PubMed  Google Scholar 

  • Chepyshko H, Lai CP, Huang LM, Liu JH, Shaw JF (2012) Multifunctionality and diversity of GDSL esterase/lipase gene family in rice (Oryza sativa L. japonica) genome: new insights from bioinformatics analysis. BMC Genom 13:309. doi:10.1186/1471-2164-13-309

    Article  CAS  Google Scholar 

  • Clauss K, Baumert A, Nimtz M, Milkowski C, Strack D (2008) Role of a GDSL lipase-like protein as sinapine esterase in Brassicaceae. Plant J 53(5):802–813. doi:10.1111/j.1365-313X.2007.03374.x

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743

    Article  CAS  PubMed  Google Scholar 

  • Coque L, Neogi P, Pislariu C, Wilson KA, Catalano C, Avadhani M, Sherrier DJ, Dickstein R (2008) Transcription of ENOD8 in Medicago truncatula nodules directs ENOD8 esterase to developing and mature symbiosomes. Mol Plant-Microbe Interact 21(4):404–410. doi: 10.1094/Mpmi-21-4-0404

    Article  CAS  PubMed  Google Scholar 

  • de la Torre F, Sampedro J, Zarra I, Revilla G (2002) AtFXG1, an Arabidopsis gene encoding alpha -l-fucosidase active against fucosylated xyloglucan Oligosaccharides. Plant Physiol 128(1):247–255. doi:10.1104/pp.010508

    Article  PubMed Central  Google Scholar 

  • Dickstein R, Prusty R, Peng T, Ngo W, Smith ME (1993) Enod8, a novel early nodule-specific gene, is expressed in empty alfalfa nodules. Mol Plant-Microbe Interact 6(6):715–721

    Article  CAS  PubMed  Google Scholar 

  • Hong JK, Choi HW, Hwang IS, Kim DS, Kim NH, Choi du S, Kim YJ, Hwang BK (2008) Function of a novel GDSL-type pepper lipase gene, CaGLIP1, in disease susceptibility and abiotic stress tolerance. Planta 227(3):539–558. doi:10.1007/s00425-007-0637-5

    Article  CAS  PubMed  Google Scholar 

  • Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, Widmayer P, Gruissem W, Zimmermann P (2008) Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinform 2008:420747. doi:10.1155/2008/420747

    Article  Google Scholar 

  • Huang LM, Lai CP, Chen LO, Chan MT, Shaw JF (2015) Arabidopsis SFAR4 is a novel GDSL-type esterase involved in fatty acid degradation and glucose tolerance. Bot Stud 56(1):33. doi:10.1186/s40529-015-0114-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim KJ, Lim JH, Kim MJ, Kim T, Chung HM, Paek KH (2008) GDSL-lipase1 (CaGL1) contributes to wound stress resistance by modulation of CaPR-4 expression in hot pepper. Biochem Biophys Res Commun 374(4):693–698. doi:10.1016/j.bbrc.2008.07.120

    Article  CAS  PubMed  Google Scholar 

  • Kim HG, Kwon SJ, Jang YJ, Nam MH, Chung JH, Na YC, Guo HW, Park OK (2013) GDSL lipase 1 modulates plant immunity through feedback regulation of ethylene signaling. Plant Physiol 163(4):1776–1791. doi:10.1104/pp.113.225649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HG, Kwon SJ, Jang YJ, Chung JH, Nam MH, Park OK (2014) GDSL lipase 1 regulates ethylene signaling and ethylene-associated systemic immunity in Arabidopsis. FEBS Lett 588(9):1652–1658. doi:10.1016/j.febslet.2014.02.062

    Article  CAS  PubMed  Google Scholar 

  • Kram BW, Bainbridge EA, Perera MA, Carter C (2008) Identification, cloning and characterization of a GDSL lipase secreted into the nectar of Jacaranda mimosifolia. Plant Mol Biol 68(1–2):173–183. doi:10.1007/s11103-008-9361-1

    Article  CAS  PubMed  Google Scholar 

  • Kwon SJ, Jin HC, Lee S, Nam MH, Chung JH, Kwon SI, Ryu CM, Park OK (2009) GDSL lipase-like 1 regulates systemic resistance associated with ethylene signaling in Arabidopsis. Plant J 58(2):235–245. doi:10.1111/j.1365-313X.2008.03772.x

    Article  CAS  PubMed  Google Scholar 

  • Lee KA (2003) Characterization of a salicylic acid- and pathogen-induced lipase-like gene in chinese cabbage. J Biochem Mol Biol 36(5):433–441

    CAS  PubMed  Google Scholar 

  • Lee DS, Kim BK, Kwon SJ, Jin HC, Park OK (2009) Arabidopsis GDSL lipase 2 plays a role in pathogen defense via negative regulation of auxin signaling. Biochem Biophys Res Commun 379(4):1038–1042. doi:10.1016/j.bbrc.2009.01.006

    Article  CAS  PubMed  Google Scholar 

  • Mikleusevic G, Salopek-Sondi B, Luic M (2009) Arab-1, a GDSL lipase from the model plant, Arabidopsis thaliana (L.) Heynh. Croat Chem Acta 82(2):439–447

    CAS  Google Scholar 

  • Naranjo MA, Forment J, Roldan M, Serrano R, Vicente O (2006) Overexpression of Arabidopsis thaliana LTL1, a salt-induced gene encoding a GDSL-motif lipase, increases salt tolerance in yeast and transgenic plants. Plant Cell Environ 29(10):1890–1900. doi:10.1111/j.1365-3040.2006.01565.x

    Article  CAS  PubMed  Google Scholar 

  • Solanas M, Escrich E (1997) An improved protocol to increase sensitivity of Southern blot using dig-labelled DNA probes. J Biochem Biophys Methods 35(3):153–159. doi:10.1016/S0165-022x(97)00031-6

  • Takahashi K, Shimada T, Kondo M, Tamai A, Mori M, Nishimura M, Hara-Nishimura I (2010) Ectopic expression of an esterase, which is a candidate for the unidentified plant cutinase, causes cuticular defects in Arabidopsis thaliana. Plant Cell Physiol 51(1):123–131. doi:10.1093/pcp/pcp173

    Article  CAS  PubMed  Google Scholar 

  • Updegraff EP, Zhao F, Preuss D (2009) The extracellular lipase EXL4 is required for efficient hydration of Arabidopsis pollen. Sex Plant Reprod 22(3):197–204. doi:10.1007/s00497-009-0104-5

    Article  CAS  PubMed  Google Scholar 

  • Upton C, Buckley JT (1995) A new family of lipolytic enzymes? Trends Biochem Sci 20(5):178–179

    Article  CAS  PubMed  Google Scholar 

  • Volokita M, Rosilio-Brami T, Rivkin N, Zik M (2011) Combining comparative sequence and genomic data to ascertain phylogenetic relationships and explore the evolution of the large GDSL-lipase family in land plants. Mol Biol Evol 28(1):551–565. doi:10.1093/molbev/msq226

    Article  CAS  PubMed  Google Scholar 

  • Wu SH, Ramonell K, Gollub J, Somerville S (2001) Plant gene expression profiling with DNA microarrays. Plant Physiol Biochem 39(11):917–926

    Article  CAS  Google Scholar 

  • Zhang Z, Ober JA, Kliebenstein DJ (2006) The gene controlling the quantitative trait locus EPITHIOSPECIFIER MODIFIER1 alters glucosinolate hydrolysis and insect resistance in Arabidopsis. Plant Cell 18(6):1524–1536. doi:10.1105/tpc.105.039602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Genevestigator GW (2004a) Arabidopsis microarray database and analysis toolbox. Plant Physiol 136(4):4335–4335

    Article  CAS  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004b) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136(1):2621–2632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by a Grant from the National Science Council of Taiwan Number NSC 102-2313-B-269-001 to C. P. Lai.

Author information

Authors and Affiliations

Authors

Contributions

CPL and LMH supervised the research design, performed research, and analyzed the data. MTC and LFOC designed research and analyzed the data. JFS supervised the study, designed research, analyzed data, and drafted the manuscript. All authors approved the final manuscript.

Corresponding author

Correspondence to Jei-Fu Shaw.

Additional information

Chia-Ping Lai and Li-Min Huang are Co-first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 393 KB)

Supplementary material 2 (PPT 440 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, CP., Huang, LM., Chen, LF.O. et al. Genome-wide analysis of GDSL-type esterases/lipases in Arabidopsis . Plant Mol Biol 95, 181–197 (2017). https://doi.org/10.1007/s11103-017-0648-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-017-0648-y

Keywords

Navigation