Skip to main content
Log in

Lipid transfer proteins in coffee: isolation of Coffea orthologs, Coffea arabica homeologs, expression during coffee fruit development and promoter analysis in transgenic tobacco plants

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The aim of the present study was to perform a genomic analysis of non-specific lipid-transfer proteins (nsLTPs) in coffee. Several nsLTPs-encoding cDNA and gene sequences were cloned from Coffea arabica and Coffea canephora species. In this work, their analyses revealed that coffee nsLTPs belong to Type II LTP characterized under their mature forms by a molecular weight of around 7.3 kDa, a basic isoelectric points of 8.5 and the presence of typical CXC pattern, with X being an hydrophobic residue facing towards the hydrophobic cavity. Even if several single nucleotide polymorphisms were identified in these nsLTP-coding sequences, 3D predictions showed that they do not have a significant impact on protein functions. Northern blot and RT-qPCR experiments revealed specific expression of Type II nsLTPs-encoding genes in coffee fruits, mainly during the early development of endosperm of both C. arabica and C. canephora. As part of our search for tissue-specific promoters in coffee, an nsLTP promoter region of around 1.2 kb was isolated. It contained several DNA repeats including boxes identified as essential for grain specific expression in other plants. The whole fragment, and a series of 5′ deletions, were fused to the reporter gene β-glucuronidase (uidA) and analyzed in transgenic Nicotiana tabacum plants. Histochemical and fluorimetric GUS assays showed that the shorter (345 bp) and medium (827 bp) fragments of nsLTP promoter function as grain-specific promoters in transgenic tobacco plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • An G, Ebert PR, Mitra A, Ha SB (1993) Binary vectors. In: Gelvin SB, Schilperoort RA, Verma DPS (eds) Plant molecular biology manual. Kluwer Academic Publishers, Dordrecht, pp A3/1–A3/19

    Google Scholar 

  • Arondel V, Tchang F, Baillet B, Vignols F, Grellet F, Delseny M, Kader JC, Puigdomenech P (1991) Multiple mRNA coding for phospholipid-transfer protein from Zea mays arise from alternative splicing. Gene 99:133–136

    Article  CAS  PubMed  Google Scholar 

  • Boutrot F, Guirao A, Alary R, Joudrier P, Gautier M-F (2005) Wheat non-specific lipid transfer protein genes display a complex pattern of expression in developing seeds. Biochim Biophys Acta 1730:114–125

    Article  CAS  PubMed  Google Scholar 

  • Boutrot F, Meynard D, Guiderdoni E, Joudrier P, Gautier MF (2007) The Triticum aestivum non-specific lipid transfer protein (TaLtp) gene family: comparative promoter activity of six TaLtp genes in transgenic rice. Planta 225:843–862

    Article  CAS  PubMed  Google Scholar 

  • Boutrot F, Chantret N, Gautier MF (2008) Genome-wide analysis of the rice and Arabidopsis non-specific lipid transfer protein (nsLtp) gene families and identification of wheat nsLtp genes by EST data mining. BMC Genomics 9:86

    Article  PubMed Central  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bromberg Y, Rost B (2007) SNAP: predict effect of non-synonymous polymorphisms on function. Nucl Acids Res 35:3823–3835

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cameron KD, Teece MA, Smart LB (2006) Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco. Plant Physiol 140:176–183

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552

    Article  CAS  PubMed  Google Scholar 

  • Chang WC, Lee TY, Huang HD, Huang HY, Pan RL (2008) PlantPAN: plant promoter analysis navigator, for identifying combinatorial cis-regulatory elements with distance constraint in plant gene groups. BMC Genomics 9:561

    Article  PubMed Central  PubMed  Google Scholar 

  • Chasman D, Adams RM (2001) Predicting the functional consequences of non-synonymous single nucleotide polymorphisms: structure based assessment of amino acid variation. J Mol Biol 307:683–706

    Article  CAS  PubMed  Google Scholar 

  • Chen MH, Bergman C, Pinson S, Fjellstrom R (2008a) Waxy gene haplotypes: associations with apparent amylose content and the effect by the environment in an international rice germplasm collection. J Cereal Sci 47:536–545

    Article  CAS  Google Scholar 

  • Chen MH, Bergman CJ, Pinson S, Fjellstrom R (2008b) Waxy gene haplotypes: associations with pasting properties in an international rice germplasm collection. J Cereal Sci 48:781–788

    Article  CAS  Google Scholar 

  • Cruz F, Kalaoun S, Nobile P, Colombo C, Almeida J, Barros LMG, Romano E, Grossi-de-Sa MF, Vaslin M, Alves-Ferreira M (2009) Evaluation of coffee reference genes for relative expression studies by quantitative real-time RT-PCR. Mol Breed 23:607–616

    Article  CAS  Google Scholar 

  • De Castro RD, Marraccini P (2006) Cytology, biochemistry and molecular changes during coffee fruit development. Braz J Plant Physiol 18:175–199

    Article  Google Scholar 

  • De Kochko A, Akaffou S, Andrade AC, Campa C, Crouzillat D, Guyot R, Hamon P, Ming R, Mueller LA, Poncet V, Tranchant-Dubreuil C, Hamon S (2010) Advances in Coffea genomics. In: Kader JC, Delseny M (eds) Advances in botanical research, vol 53. Academic Press, Oxford, pp 23–53

    Google Scholar 

  • De Pater S, Pham K, Chua NH, Memelink J, Kijne J (1993) A 22-bp fragment of the pea lectin promoter containing essential TGAC-like motifs confers seed-specific gene expression. Plant Cell 5:877–886

    Article  PubMed Central  PubMed  Google Scholar 

  • Decazy F, Avelino J, Guyot B, Perriot JJ, Pineda C, Cilas C (2003) Quality of different Honduran coffees in relation to several environments. J Food Sci 68:2356–2361

    Article  CAS  Google Scholar 

  • Dentan E (1985) Etude microscopique du développement et de la maturation du grain de café. In: Proceedings of the international congress of ASIC 11, pp 381–398

  • Dias RCE, Campanha FG, Vieira LGE, Ferreira LP, Pot D, Marraccini P, Benassi MT (2010) Evaluation of kahweol and cafestol in coffee tissues and roasted coffee by a new high-performance liquid chromatography methodology. J Agric Food Chem 58:88–93

    Article  CAS  PubMed  Google Scholar 

  • Donald RGK, Cashmore AR (1990) Mutation of either G box or l box sequences profoundly affects expression from the Arabidopsis rbcS-1A promoter. EMBO J 9:1717–1726

    CAS  PubMed Central  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Dufayard JF, Duret L, Penel S, Gouy M, Rechenmann F, Perrière G (2005) Tree pattern matching in phylogenetic trees: automatic search for orthologs or paralogs in homologous gene sequence databases. Bioinformatics 21:2596–2603

    Article  CAS  PubMed  Google Scholar 

  • Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) TargetP: locating proteins in the cell using TargetP, SignalP, and related tools. Nat Protoc 2:953–971

    Article  CAS  PubMed  Google Scholar 

  • Fleming AJ, Mandel T, Hofmann S, Sterk P, de Vries SC, Kuhlemeier C (1992) Expression pattern of a tobacco lipid transfer protein gene within the shoot apex. Plant J 2:855–862

    CAS  PubMed  Google Scholar 

  • Folstar P (1985) Lipids. In: Clarke RJ, Macrae R (eds) Coffee-chemistry, vol 1. Elsevier Applied Science Publishers, London, pp 203–220

    Chapter  Google Scholar 

  • Garcia-Garrido JM, Menossi M, Puigdoménech P, Martinez-Izquierdo JA, Delseny M (1998) Characterization of a gene encoding an abscisic acid-inducible type-2 lipid transfer protein from rice. FEBS Lett 428:193–199

    Article  CAS  PubMed  Google Scholar 

  • García-Olmedo F, Molina A, Segura A, Moreno M (1995) The defensive role of nonspecific lipid-transfer proteins in plants. Trends Microbiol 3:72–74

    Article  PubMed  Google Scholar 

  • Geromel C, Ferreira LP, Guerreiro SM, Cavalari AA, Pot D, Pereira LF, Leroy T, Vieira LG, Mazzafera P, Marraccini P (2006) Biochemical and genomic analysis of sucrose metabolism during coffee (Coffea arabica) fruit development. J Exp Bot 57:3243–3258

    Article  CAS  PubMed  Google Scholar 

  • Giardine B, Riemer C, Hardison RC et al (2005) Galaxy: a platform for interactive large-scale genome analysis. Genome Res 15:1451–1455

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    Article  CAS  PubMed  Google Scholar 

  • Harada E, Kim JA, Meyer AJ, Hell R, Clemens S, Choi YE (2010) Expression profiling of tobacco leaf trichomes identifies genes for biotic and abiotic stresses. Plant Cell Physiol 51:1627–1637

    Article  CAS  PubMed  Google Scholar 

  • Horsch RB, Fry J, Hoffmann N, Neidermeyer J, Rogers SG, Fraley RT (1993) Leaf disk transformation. In: Gelvin SB, Schilperoort RA, Verma DPS (eds) Plant molecular biology manual. Kluwer Academic Publishers, Dordrecht, pp A5/1–A5/9

    Google Scholar 

  • Huson DH, Richter DC, Rausch C, Dezulian T, Franz M, Rupp R (2007) Dendroscope: an interactive viewer for large phylogenetic trees. BMC Bioinform 8:460

    Article  Google Scholar 

  • Jakobsen K, Klemsdal SS, Aalen RB, Bosnes M, Alexander D, Olsen OA (1989) Barley aleurone development: molecular cloning of aleurone-specific cDNAs from immature grains. Plant Mol Biol 12:285–293

    Article  CAS  PubMed  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed Central  PubMed  Google Scholar 

  • Joët T, Laffargue A, Salmona J, Doulbeau S, Descroix F, Bertrand B, De Kochko A, Dussert S (2009) Metabolic pathways in tropical dicotyledonous albuminous seeds: Coffea arabica as a case study. New Phytol 182:146–162

    Article  PubMed Central  PubMed  Google Scholar 

  • Kader JC (1996) Lipid transfer proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 47:627–654

    Article  CAS  PubMed  Google Scholar 

  • Kader JC (1997) Lipid-transfer proteins: a puzzling family of plant proteins. Trends Plant Sci 2:66–70

    Article  Google Scholar 

  • Kalla R, Shimamoto K, Potter R, Nielsen PS, Linnestad C, Olsen OA (1994) The promoter of the barley aleurone specific gene encoding a putative 7-kDa lipid transfer protein confers aleurone cell-specific expression in transgenic rice. Plant J 6:849–860

    Article  CAS  PubMed  Google Scholar 

  • Katoh K, Toh H (2008) Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9:286–298

    Article  CAS  PubMed  Google Scholar 

  • Kawagoe Y, Murai N (1992) Four distinct nuclear proteins recognize in vitro the proximal promoter of the bean seed storage protein β-phaseolin gene conferring spatial and temporal control. Plant J 2:927–936

    CAS  PubMed  Google Scholar 

  • Kharabian A (2010) An efficient computational method for screening functional SNPs in plants. J Theor Biol 265:55–62

    Article  CAS  PubMed  Google Scholar 

  • Krause A, Sigrist CJ, Dehning I, Sommer H, Broughton WJ (1994) Accumulation of transcripts encoding a lipid transfer-like protein during deformation of nodulation-competent Vigna unguiculata root hairs. Mol Plant Microbe Interact 7:411–418

    Article  CAS  PubMed  Google Scholar 

  • Kristensen AK, Brunstedt J, Nielsen KK, Roepstorff P, Mikkelsen JD (2000) Characterization of a new antifungal non-specific lipid transfer protein (nsLTP) from sugar beet leaves. Plant Sci 155:31–40

    Article  CAS  PubMed  Google Scholar 

  • Larkin PD, Park WD (2003) Association of waxy gene single nucleotide polymorphisms with starch characteristics in rice (Oryza sativa L.). Mol Breed 12:335–339

    Article  CAS  Google Scholar 

  • Lashermes P, Andrade AC, Etienne H (2008) Genomics of coffee, one of the world’s largest traded commodities. In: Moore H, Ming R (eds) Genomics of tropical crop plants. Springer, Berlin, pp 203–226

    Chapter  Google Scholar 

  • Leroy T, Ribeyre F, Bertrand B, Charmetant P, Dufour M, Montagnon C, Marraccini P, Pot D (2006) Genetics of coffee quality. Braz J Plant Physiol 18:229–242

    Article  CAS  Google Scholar 

  • Lessard PA, Allen RD, Bernier F, Crispino JD, Fujiwara T, Beachy RN (1991) Multiple nuclear factors interact with upstream sequences of differentially regulated β-conglycinin genes. Plant Mol Biol 16:397–413

    Article  CAS  PubMed  Google Scholar 

  • Lin CW, Mueller LA, Mc Carthy J, Crouzillat D, Pétiard V, Tanksley SD (2005) Coffee and tomato share common gene repertoires as revealed by deep sequencing of seed and cherry transcripts. Theor Appl Genet 112:114–130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lindorff-Larsen K, Winther JR (2001) Surprisingly high stability of barley lipid transfer protein, LTP1, towards denaturant, heat and proteases. FEBS Lett 488:145–148

    Article  CAS  PubMed  Google Scholar 

  • Linnestad C, Lönneborg A, Kalla R, Olsen OA (1991) Promoter of a lipid transfer protein gene expressed in barley aleurone cells contains similar myb and myc recognition sites as the maize Bz-McC allele. Plant Physiol 97:841–843

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lüscher B, Eisenman RN (1990) New light on Myc and Myb. Part II. Myb. Genes Dev 4:2235–2241

    Article  PubMed  Google Scholar 

  • Marchler-Bauer A, Zheng C, Chitsaz F et al (2013) CDD: conserved domains and protein three-dimensional structure. Nucl Acids Res 41(D1):D348–D352

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marion D, Douliez JP, Michon T, Elmorjani K (2000) Structure, biological and technological functions of lipid transfer proteins and indolines, the major lipid binding proteins from cereal kernels. J Cereal Sci 32:1–20

    Article  Google Scholar 

  • Marraccini P, Deshayes A, Pétiard V, Rogers WJ (1999) Molecular cloning of the complete 11S seed storage protein gene of Coffea arabica and promoter analysis in transgenic tobacco plants. Plant Physiol Biochem 37:273–282

    Article  CAS  Google Scholar 

  • Marraccini P, Courjault C, Caillet V, Lausanne F, Lepage B, Rogers WJ, Tessereau S, Deshayes A (2003) Rubisco small subunit of Coffea arabica: cDNA sequence, gene cloning and promoter analysis in transgenic tobacco plants. Plant Physiol Biochem 41:17–25

    Article  CAS  Google Scholar 

  • Marraccini P, Freire LP, Alves GSC et al (2011) RBCS1 expression in coffee: Coffea orthologs, Coffea arabica homeologs, and expression variability between genotypes and under drought stress. BMC Plant Biol 11:85

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marraccini P, Vinecky F, Alves GSC et al (2012) Differentially expressed genes and proteins upon drought acclimation in tolerant and sensitive genotypes of Coffea canephora. J Exp Bot 63:4191–4212

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Molina A, Segura A, García-Olmedo F (1993) Lipid transfer proteins (nsLTPs) from barley and maize leaves are potent inhibitors of bacterial and fungal plant pathogens. FEBS Lett 316:119–122

    Article  CAS  PubMed  Google Scholar 

  • Mondego JMC, Vidal RO, Carazzolle MF et al (2011) An EST-based analysis identifies new genes and reveals distinctive gene expression features of Coffea arabica and Coffea canephora. BMC Plant Biol 11:30

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mueller LA, Solow TH, Taylor N et al (2005) The SOL genomics network. A comparative resource for Solanaceae biology and beyond. Plant Physiol 138:1310–1317

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nieuwland J, Feron R, Huisman BAH, Fasolino A, Hilbers CW, Derksen J, Mariani C (2005) Lipid transfer proteins enhance cell wall extension in tobacco. Plant Cell 17:2009–2019

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ostergaard J, Vergnolle C, Schoentgen F, Kader JC (1993) Acyl-binding lipid-transfer proteins from rape seedlings, a novel category of proteins interacting with lipids. Biochim Biophys Acta 1170:109–117

    Article  CAS  PubMed  Google Scholar 

  • Petitot AS, Lecouls AC, Fernandez D (2008) Sub-genomic origin and regulation patterns of a duplicated WRKY gene in the allotetraploid species Coffea arabica. Tree Genet Genomes 3:379–390

    Article  Google Scholar 

  • Pons JL, Labesse G (2009) @TOME-2: a new pipeline for comparative modeling of protein-ligand complexes. Nucleic Acids Res 37(Suppl 2):W485–W491

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pyee J, Yu H, Kolattukudy PE (1994) Identification of a lipid transfer protein as the major protein in the surface wax of broccoli (Brassica oleracea) leaves. Arch Biochem Biophys 311:460–468

    Google Scholar 

  • Ramakers C, Ruijter JM, Deprez RH, Moorman AF (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen TB, Donaldson IA (2006) Investigation of the endosperm specific sucrose synthase promoter from rice using transient expression of reporter genes in guar seed tissue. Plant Cell Rep 25:1035–1042

    Article  CAS  PubMed  Google Scholar 

  • Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide: the response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683–1696

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Salmona J, Dussert S, Descroix F, de Kochko A, Bertrand B, Joët T (2008) Deciphering transcriptional networks that govern Coffea arabica seed development using combined cDNA array and real-time RT-PCR approaches. Plant Mol Biol 66:105–124

    Article  CAS  PubMed  Google Scholar 

  • Samuel D, Liu YJ, Cheng CS, Lyu PC (2002) Solution structure of plant nonspecific lipid transfer protein-2 from rice (Oryza sativa). J Biol Chem 277:35267–35273

    Article  CAS  PubMed  Google Scholar 

  • Saunders CT, Baker D (2002) Evaluation of structural and evolutionary contributions to deleterious mutations prediction. J Mol Biol 332:891–901

    Article  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 14:178–183

    Article  Google Scholar 

  • Shahmuradov IA, Gammerman AJ, Hancock JM, Bramley PM, Solovyev VV (2003) PlantProm: a database of plant promoter sequences. Nucl Acids Res 31:114–117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shi J, Blundell TL, Mizuguchi K (2001) FUGUE: sequence structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. J Mol Biol 310:243–257

    Article  CAS  PubMed  Google Scholar 

  • Shirsat AH, Wilford N, Croy R, Boulter D (1989) Sequences responsible for tissue specific promoter activity of a pea legumin gene in tobacco. Mol Gen Genet 215:326–331

    Article  CAS  PubMed  Google Scholar 

  • Simpson SD, Nakashima K, Narusaka Y, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Two different novel cis-acting elements of erd1, a clpA homologous Arabidopsis gene function in induction by dehydration stress and dark-induced senescence. Plant J 33:259–270

    Article  CAS  PubMed  Google Scholar 

  • Skriver K, Leah R, Müller-Uri F, Olsen FL, Mundy J (1992) Structure and expression of the barley lipid transfer protein gene Ltp1. Plant Mol Biol 18:585–589

    Article  CAS  PubMed  Google Scholar 

  • Söding J (2005) Protein homology detection by HMM–HMM comparison. Bioinformatics 21:951–960

    Article  PubMed  Google Scholar 

  • Speer K, Kölling-Speer I (2006) The lipid fraction of the coffee bean. Braz J Plant Physiol 18:201–216

    Article  CAS  Google Scholar 

  • Takishima K, Watanabe S, Yamada M, Mamiya G (1986) The amino-acid sequence of the nonspecific lipid transfer protein from germinated castor bean endosperms. Biochim Biophys Acta 870:248–255

    Article  CAS  Google Scholar 

  • Tapia G, Morales-Quintana L, Parra C, Berbel A, Alcorta M (2013) Study of nsLTPs in Lotus japonicus genome reveal a specific epidermal cell member (LjLTP10) regulated by drought stress in aerial organs with a putative role in cutin formation. Plant Mol Biol 82:485–501

    Article  CAS  PubMed  Google Scholar 

  • Tatematsu K, Ward S, Leyser O, Kamiya Y, Nambara E (2005) Identification of cis-elements that regulate gene expression during initiation of axillary bud outgrowth in Arabidopsis. Plant Physiol 138:757–766

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tchang F, This P, Stiefel V et al (1988) Phospholipid transfer protein: full-length cDNA and amino-acid sequence in maize. Aminoacid sequence homologies between plant phospholipid transfer proteins. J Biol Chem 263:16849–16855

    CAS  PubMed  Google Scholar 

  • Terzaghi WB, Cashmore AR (1995) Light-regulated transcription. Annu Rev Plant Physiol Plant Mol Biol 46:445–474

    Article  CAS  Google Scholar 

  • Thoma SL, Kaneko Y, Somerville C (1993) An Arabidopsis lipid transfer protein is a cell wall protein. Plant J 3:427–437

    Article  CAS  PubMed  Google Scholar 

  • Thoma S, Hecht U, Kippers A, Botella J, De Vries S, Somerville CR (1994) Tissue-specific expression of a gene encoding a cell wall-localized lipid transfer protein from Arabidopsis. Plant Physiol 105:35–45

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucl Acids Res 22:4673–4680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Trevino MB, O’Connell MA (1998) Three drought responsive members of the nonspecific lipid-transfer protein gene family in Lycopersicon pennellii show different developmental patterns of expression. Plant Physiol 116:1461–1468

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vaast P, Bertrand B, Perriot JJ, Guyot B, Génard M (2006) Fruit thinning and shade improve bean characteristics and beverage quality of coffee (Coffea arabica L.) under optimal conditions. J Sci Food Agric 86:197–204

    Article  CAS  Google Scholar 

  • Vidal RO, Mondego JMC, Pot D, Ambrosio AB, Andrade AC, Pereira LFP, Colombo CA, Vieira LGE, Carazzolle MF, Pereira GAG (2010) A high-throughput data mining of single nucleotide polymorphisms in Coffea species expressed sequence tags suggests differential homeologous gene expression in the allotetraploid Coffea arabica. Plant Physiol 154:1053–1066

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vidal R, Alekcevetch JC, Leroy T, de Bellis F, Pot D, Rodrigues GC, Carazzolle M, Pereira GAG, Andrade AC, Marraccini P (2013) High-throughput sequencing of cDNA shows that cv. Rubi and IAPAR59 of Coffea arabica have different molecular response to water privation. In: 24th International colloquium on the chemistry of Coffee, ASIC, Paris

  • Vieira LGE, Andrade AC, Colombo CA et al (2006) Brazilian coffee genome project: an EST-based genomic resource. Braz J Plant Physiol 18:95–108

    Article  CAS  Google Scholar 

  • Vincentz M, Leite A, Neshich G (1997) ACGT and vicilin core sequences in a promoter domain required for seed-specific expression of a 2S storage protein gene are recognized by the opaque-2 regulatory protein. Plant Mol Biol 34:879–889

    Article  CAS  PubMed  Google Scholar 

  • Wang NJ, Lee CC, Cheng CS, Lo WC, Yang YF, Chen MN, Lyu PC (2012) Construction and analysis of a plant non-specific lipid transfer protein database (nsLTPDB). BMC Genom 13(Suppl 1):S9

    Article  CAS  Google Scholar 

  • Wilson AJ, Petracco M, Illy E (1997) Some preliminary investigations of oil biosynthesis in the coffee fruit and its subsequent re-distribution within green and roasted beans. In: 17th International colloquium on the chemistry of Coffee, ASIC, Paris

  • Wu CY, Washida H, Onodera Y, Harada K, Takaiwa F (2000) Quantitative nature of the Prolamin-box, ACGT and AACA motifs in a rice glutelin gene promoter: minimal cis-element requirements for endosperm-specific gene expression. Plant J 23:415–421

    Article  CAS  PubMed  Google Scholar 

  • Yeats TH, Rose JKC (2008) The biochemistry and biology of extracellular plant lipid-transfer proteins (LTPs). Protein Sci 17:191–198

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yubero-Serrano EM, Moyano E, Medina-Escobar N, Muñoz-Blanco J, Caballero JL (2003) Identification of a strawberry gene encoding anon-specific lipid transfer protein that responds to ABA, wounding and cold stress. J Exp Bot 54:1865–1877

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Zhou Y (2005) SPARKS 2 and SP3 servers in CASP6. Proteins 61:152–156

    Article  CAS  PubMed  Google Scholar 

  • Zottich U, Da Cunha M, Carvalho AO (2011) Purification, biochemical characterization and antifungal activity of a new lipid transfer protein (LTP) from Coffea canephora seeds with α-amylase inhibitor properties. Biochim Biophys Acta 1810:375–383

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We should like to thank Gustavo Costa Rodrigues (Embrapa CNPTIA) for providing the C. arabica fruits used in this study and the members of the Apomix laboratory of Embrapa Genetic Resources and Biotechnology for assistance with microscopy. We are especially indebted to Manuel Ruiz and Jean-François Dufayard (CIRAD-UMR AGAP) for fruitful discussions and bioinformatics assistance. We are also grateful to Luciano V. Paiva and Antônio Chalfun Jr. (Lavras Federal University-UFLA) for supporting this project, to Renata H. Santana for their technical assistance and to Peter Biggins (CIRAD) for its critical reading of the manuscript. This work was funded by the Embrapa macroprogram project. The authors acknowledge the scholarships from the Brazilian agencies CNPq (Michelle G. Cotta, Eder A. Barbosa), Brazilian Consortium of Coffee Research (Felipe Vinecky, Natalia G. Vieira) and CAPES (Michelle G. Cotta, CAPES-COFECUB Project Sv738-12). The 3′ end fragment (411 bp) of the LTP promoter was patented (BR1020120081628) by INPI-Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Marraccini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cotta, M.G., Barros, L.M.G., de Almeida, J.D. et al. Lipid transfer proteins in coffee: isolation of Coffea orthologs, Coffea arabica homeologs, expression during coffee fruit development and promoter analysis in transgenic tobacco plants. Plant Mol Biol 85, 11–31 (2014). https://doi.org/10.1007/s11103-013-0166-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-013-0166-5

Keywords

Navigation