Skip to main content
Log in

Plant senescence and crop productivity

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Senescence is a developmental process which in annual crop plants overlaps with the reproductive phase. Senescence might reduce crop yield when it is induced prematurely under adverse environmental conditions. This review covers the role of senescence for the productivity of crop plants. With the aim to enhance productivity, a number of functional stay-green cultivars have been selected by conventional breeding, in particular of sorghum and maize. In many cases, a positive correlation between leaf area duration and yield has been observed, although in a number of other cases, stay-green cultivars do not display significant effects with regards to productivity. In several crops, the stay-green phenotype is observed to be associated with a higher drought resistance and a better performance under low nitrogen conditions. Among the approaches used to achieve stay-green phenotypes in transgenic plants, the expression of the IPT gene under control of senescence-associated promoters has been the most successful. The promoters employed for senescence-regulated expression contain cis-elements for binding of WRKY transcription factors and factors controlled by abscisic acid. In most crops transformed with such constructs the stay-green character has led to increased biomass, but only in few cases to increased seed yield. A coincidence of drought stress resistance and stay-green trait is observed in many transgenic plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abushakra SS, Philipps DA, Huffaker RC (1978) Nitrogen fixation and delayed leaf senescence in soybeans. Science 199:973–975

    Google Scholar 

  • Alkhatib K, Paulsen GM (1990) Photosynthesis and productivity during high temperature stress of wheat genotypes from major world regions. Crop Sci 30:1127–1132

    Google Scholar 

  • Amasino RM (2009) Floral induction and monocarpic versus polycarpic life histories. Gen Biol 10:228

    Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Ann Rev Plant Physiol Plant Mol Biol 55:373–399

    CAS  Google Scholar 

  • Ay N, Irmler K, Fischer A, Uhlemann R, Reuter G, Humbeck K (2009) Epigenetic programming via histone methylation at WRKY53 controls leaf senescence in Arabidopsis thaliana. Plant J 58:333–346

    PubMed  CAS  Google Scholar 

  • Balzadeh S, Riano-Pachón DM, Mueller-Roeber B (2008) Transcription factors regulating leaf senescence in Arabidopsis thaliana. Plant Biol 10:63–75

    Google Scholar 

  • Bartoli CG, Casalongue C, Simontacchi M, Marquez-Garcia B, Foyer C (2013) Interactions between hormone and redox signalling pathways in the control of growth and cross tolerance to stress. Environ Exp Bot. http://dx.doi.org/10.1016/j.envexpbot.2012.05.003

  • Biswal UC, Biswal B (1984) Photocontrol of leaf senescence. Photochem Photobiol 39:875–879

    CAS  Google Scholar 

  • Blake NK, Lanning SP, Martin JM, Sherman JD, Talbert LE (2007) Relationship of flag leaf characteristics to economically important traits in two spring wheat crosses. Crop Sci 47:491–496

    Google Scholar 

  • Bogard M, Jourdan M, Allard V, Martre P, Perretant MR, Ravel C, Heumez E, Orford S, Snape J, Griffiths S, Gaju O, Foulkes J, Le Gouis J (2011) Anthesis date mainly explained correlations between post-anthesis leaf senescence, grain yield, and grain protein concentration in a winter wheat population segregating for flowering time QTLs. J Exp Bot 62:3621–3636

    PubMed  CAS  Google Scholar 

  • Boonman A, Anten NPR, Dueck TA, Jordi W, van der Werf A, Voesenek L, Pons TL (2006) Functional significance of shade-induced leaf senescence in dense canopies: an experimental test using transgenic tobacco. Am Nat 168:597–607

    PubMed  Google Scholar 

  • Borrás L, Slafer GA, Otegui ME (2004) Seed dry weight response to source-sink manipulations in wheat, maize and soybean: a quantitative reappraisal. Field Crops Res 86:131–146

    Google Scholar 

  • Borrell AK, Bidinger F, Sunitha K (1999) Stay-green trait associated with yield in recombinant inbred sorghum lines varying in rate of leaf senescence. Intern Sorghum Millets Newslet 40:31–34

    Google Scholar 

  • Borrell AK, Hammer GL, Douglas ACL (2000a) Does maintaining green leaf area in sorghum improve yield under drought? I. Leaf growth and senescence. Crop Sci 40:1026–1037

    Google Scholar 

  • Borrell AK, Hammer GL, Henzell RG (2000b) Does maintaining green leaf area in sorghum improve yield under drought? II. Dry matter production and yield. Crop Sci 40:1037–1048

    Google Scholar 

  • Bray AB, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stress. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry & molecular biology of plants. American Society of Plant Physiology, Rockville, pp 1158–1203

    Google Scholar 

  • Breeze E, Harrison E, McHattie S, Hughes L, Hickman R, Hill C, Kiddle S, Kim YS, Penfold CA, Jenkins D, Zhang CJ, Morris K, Jenner C, Jackson S, Thomas B, Tabrett A, Legaie R, Moore JD, Wild DL, Ott S, Rand D, Beynon J, Denby K, Mead A, Buchanan-Wollaston V (2011) High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell 23:873–894

    PubMed  CAS  Google Scholar 

  • Brevis JC, Morris CF, Manthey F, Dubcovsky J (2010) Effect of the grain protein content locus Gpc-B1 on bread and pasta quality. J Cereal Sci 51:357–365

    CAS  Google Scholar 

  • Buchanan-Wollaston V, Earl S, Harrison E, Mathas E, Navabpour S, Page T, Pink D (2003) The molecular analysis of leaf senescence—a genomics approach. Plant Biotech 1:3–22

    CAS  Google Scholar 

  • Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim PO, Nam HG, Lin JF, Wu SH, Swidzinski J, Ishizaki K, Leaver CJ (2005) Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J 42:567–585

    PubMed  CAS  Google Scholar 

  • Calderini O, Bovone T, Scotti C, Pupilli F, Piano E, Arcioni S (2007) Delay of leaf senescence in Medicago sativa transformed with the ipt gene controlled by the senescence-specific promoter SAG12. Plant Cell Rep 26:611–615

    PubMed  CAS  Google Scholar 

  • Cao ML (2001) Performance of autoregulatory senescence-inhibition in rice. Human Agric Sci Technol Newsl 2:17–24

    Google Scholar 

  • Carimi F, Zottini M, Formentin E, Terzi M, Lo Schiavo F (2003) Cytokinins: new apoptotic inducers in plants. Planta 216:413–421

    PubMed  CAS  Google Scholar 

  • Chaves MM, Pereira JS, Maroco J, Rodrigues ML, Ricardo CPP, Osorio ML, Carvalho I, Faria T, Pinheiro C (2002) How plants cope with water stress in the field. Photosynthesis and growth. Ann Bot 89:907–916

    PubMed  CAS  Google Scholar 

  • Chen J, Liang Y, Hu X, Wang X, Tan F, Zhang H, Ren Z, Luo P (2010) Physiological characterization of wheat cultivars during the grain filling stage under field growing conditions. Acta Physiol Plant 32:875–882

    CAS  Google Scholar 

  • Chen CC, Han GQ, He HQ, Westcott M (2011) Yield, protein, and remobilization of water soluble carbohydrate and nitrogen of three spring wheat cultivars as influenced by nitrogen input. Agron J 103:786–795

    Google Scholar 

  • Christopher JT, Manschadi AM, Hammer G, Borrell AK (2008) Developmental and physiological traits associated with high yield and stay-green phenotype in wheat. Austr J Agr Res 59:354–364

    Google Scholar 

  • Ding L, Wang KJ, Jiang GM, Liu MZ, Niu SL, Gao LM (2005) Post-anthesis changes in photosynthetic traits of maize hybrids released in different years. Field Crop Res 93:108–115

    Google Scholar 

  • Ding L, Wang KJ, Jiang GM, Liu MZ, Gao LM (2007) Photosynthetic rate and yield formation in different maize hybrids. Biol Plant 51:165–168

    Google Scholar 

  • Distelfeld A, Pearce SP, Avni R, Scherer B, Uauy C, Piston F, Slade A, Zhao R, Dubcovsky J (2012) Divergent functions of orthologous NAC transcription factors in wheat and rice. Plant Mol Biol 78:515–524

    PubMed  CAS  Google Scholar 

  • Donnison IS, Gay AP, Thomas H, Edwards KJ, Edwards D, James CL, Thomas AM, Ougham HJ (2007) Modification of nitrogen remobilization, grain fill and leaf senescence in maize (Zea mays) by transposon insertional mutagenesis in a protease gene. New Phytol 173:481–494

    Google Scholar 

  • Duncan RR, Bockholt AJ, Miller FR (1981) Descriptive comparison of senescent and non-senescent sorghum genotypes. Agron J 73:849–853

    CAS  Google Scholar 

  • Egli DB (2011) Time and the productivity of agronomic crops and cropping systems. Agron J 103:743–750

    Google Scholar 

  • Egli DB, Leggett JE, Duncan WG (1976) Influence of N stress on leaf senescence and N redistribution in soybeans. Agron J 70:43–47

    Google Scholar 

  • Finkel E (1999) Australian Center develops tools for developing world. Science 285:1481–1483

    PubMed  CAS  Google Scholar 

  • Finkelstein RR, Gibson SI (2002) ABA and sugar interactions regulating development: cross-talk or voices in a crowd? Curr Op Plant Biol 5:26–32

    CAS  Google Scholar 

  • Fischer RA (2008) The importance of grain or kernel number in wheat: a reply to Sinclair and Jamieson. Field Crops Res 105:15–21

    Google Scholar 

  • Fischer AM (2012) The complex regulation of senescence. Crit Rev Plant Sci 31:124–147

    CAS  Google Scholar 

  • Fu JD, Yan YF, Kim MY, Lee SH, Lee BW (2011) Population-specific quantitative trait loci mapping for functional stay-green trait in rice (Oryza sativa L.). Genome 54:235–243

    Google Scholar 

  • Gan S (2003) Mitotic and postmitotic senescence in plants. Sci Aging Knowl Environ 38:re7

    Google Scholar 

  • Gan S, Amasino RM (1995) Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270:986–988

    Google Scholar 

  • Gan S, Amasino RM (1997) Making sense of senescence—molecular genetic regulation and manipulation of leaf senescence. Plant Physiol 113:313–319

    PubMed  CAS  Google Scholar 

  • Gentinetta E, Ceppl D, Lepori C, Perico G, Motto M, Salamini F (1986) A major gene for delayed senescence in maize. Pattern of photosynthates accumulation and inheritance. Plant Breed 97:193–203

    CAS  Google Scholar 

  • Gong Y, Zhang J, Gao J, Lu L, Wang J (2005) Slow export of photoassimilate from stay-green leaves during late grain-filling stage in hybrid winter wheat (Triticum aestivum L.). J Agron Crop Sci 191:292–299

    CAS  Google Scholar 

  • Gong Y, JI X, Gao J (2009) Grain sink strength related to carbon staying in the leaves of hybrid wheat XN901. Agr Sci China 8:546–555

    CAS  Google Scholar 

  • Gonzalez A, Bermejo V, Gimeno BS (2010) Effect of different physiological traits on grain yield in barley grown under irrigated and terminal water deficit conditions. J Agr Sci 148:319–328

    CAS  Google Scholar 

  • Gregersen PL (2011) Senescence and nutrient remobilization in crop plants. In: Hawkesford MJ, Barraclough PB (eds) The molecular and physiological basis of nutrient use efficiency in crops. Blackwell, New York, pp 83–102

    Google Scholar 

  • Gregersen PL, Holm PB, Krupinska K (2008) Leaf senescence and nutrient remobilisation in barley and wheat. Plant Biol 10:37–49

    PubMed  CAS  Google Scholar 

  • Guiboileau A, Sormani R, Meyer C, Masclaux-Daubresse C (2010) Senescence and death of plant organs: nutrient recycling and developmental regulation. CR Biol 333:382–391

    CAS  Google Scholar 

  • Guo Y, Gan S (2005) Leaf senescence: signals, execution, and regulation. Current Topics Dev Biol 71:83–112

    CAS  Google Scholar 

  • Guo Y, Gan S (2006) AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J 46:601–612

    PubMed  CAS  Google Scholar 

  • Guo Y, Gan S (2007) Genetic manipulation of leaf senescence. In: Gan S (ed) Senescence processes in plants. Blackwell, New Dehli, pp 304–322

    Google Scholar 

  • Guo Y, Gan S (2011) AtMYB2 regulates whole plant senescence by inhibiting cytokinin-mediated branching at late stages of development in Arabidopsis. Plant Physiol 156:1612–1619

    PubMed  CAS  Google Scholar 

  • Guo Y, Gan S (2012) Convergence and divergence in gene expression profiles induced by leaf senescence and 27 senescence-promoting hormonal, pathological and environmental stress treatments. Plant Cell Environ 35:644–655

    PubMed  CAS  Google Scholar 

  • Ha S, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Tran L-SP (2012) Cytokinins: metabolism and function in plant adaptation to environmental stresses. Trends Plant Sci 17:172–179

    PubMed  CAS  Google Scholar 

  • Hafsi M, Mechmeche W, Bouamama L, Djekoune A, Zaharieva M, Monneveux P (2000) Flag leaf senescence, as evaluated by numerical image analysis, and its relationship with yield under drought in durum wheat. J Agr Crop Sci 185:275–280

    Google Scholar 

  • Hajouj T, Michelis R, Gepstein S (2000) Cloning and characterization of a receptor-like protein kinase gene associated with senescence. Plant Physiol 124:1305–1314

    PubMed  CAS  Google Scholar 

  • Harris K, Subudhi PK, Borrell A, Jordan D, Rosenow D, Nguyen H (2007) Sorghum stay-green QTL individually reduce post-flowering drought-induced leaf senescence. J Exp Bot 58:327–338

    Google Scholar 

  • Hikosaka K (2005) Leaf canopy as a dynamic system: ecophysiology and optimality in leaf turnover. Ann Bot 95:521–533

    PubMed  CAS  Google Scholar 

  • Hirose N, Takei K, Kuroha T, Kamada-Nobusada T, Hayashi H, Sakakibara H (2008) Regulation of cytokinin biosynthesis, compartmentalization and translocation. J Exp Bot 59:75–83

    PubMed  CAS  Google Scholar 

  • Hörtensteiner S (2007) Chlorophyll degradation during senescence. Ann Rev Plant Biol 57:55–77

    Google Scholar 

  • Hörtensteiner S (2009) Stay-green regulates chlorophyll and chlorophyll-binding protein degradation during senescence. Trends Plant Sci 14:155–162

    PubMed  Google Scholar 

  • Hörtensteiner S, Feller U (2002) Nitrogen metabolism and remobilization during senescence. J Exp Bot 53:927–937

    PubMed  Google Scholar 

  • Hunkova E, Zivcak M, Olsovska K (2011) Leaf area duration of oilseed rape (Brassica napus subsp. napus) varieties and hybrids and it’s relationship to selected growth and productivity parameters. J Centr Eur Agr 12:1–15

    Google Scholar 

  • Hunter DA, Watson LM (2008) The harvest-responsive region of the Asparagus officinalis sparagine synthetase promoter reveals complexity in the regulation of the harvest response. Funct Plant Biol 35:1212–1223

    CAS  Google Scholar 

  • Ismail AM, Hall AE, Ehlers JD (2000) Delayed leaf senescence and heat tolerance traits mainly are independently expressed in cowpea. Crop Sci 40:1049–1055

    Google Scholar 

  • Jansson S, Thomas H (2008) Senescence: developmental program or timetable? New Phytol 179:575–579

    PubMed  Google Scholar 

  • Jiang GH, He YQ, Xu CG, Li XH, Zhang Q (2004) The genetic basis of stay-green in rice analyzed in a population of doubled haploid lines derived from an indica by japonica cross. Theor Appl Gen 108:688–698

    CAS  Google Scholar 

  • Jin Y, Ni DA, Ruan YL (2009) Posttranslational elevation of cell wall invertase activity by silencing its inhibitor in tomato delays leaf senescence and increases seed weight and fruit hexose level. Plant Cell 21:2072–2089

    PubMed  CAS  Google Scholar 

  • Jordan DR, Hunt CH, Cruickshank AW, Borrell AK, Henzell RG (2012) The relationship between the stay-green trait and grain yield in elite Sorghum hybrids grown in a range of environments. Crop Sci 52:1153–1161

    Google Scholar 

  • Jordi W, Schapendonk A, Davelaar E, Stoopen GM, Pot CS, De Visser R, Van Rhijn JA, Gan S, Amasino RM (2000) Increased cytokinin levels in transgenic P-SAG12-IPT tobacco plants have large direct and indirect effects on leaf senescence, photosynthesis and N partitioning. Plant Cell Environ 23:279–289

    CAS  Google Scholar 

  • Jukanti AK, Heidlebaugh NM, Parrott DL, Fischer IA, McInnerney K, Fischer AM (2008) Comparative transcriptome profiling of near-isogenic barley (Hordeum vulgare) lines differing in the allelic state of a major grain protein content locus identifies genes with possible roles in leaf senescence and nitrogen reallocation. New Phytol 177:333–349

    PubMed  CAS  Google Scholar 

  • Kang K, Kim YS, Park S, Back K (2009) Senescence-induced serotonin biosynthesis and its role in delaying senescence in rice leaves. Plant Physiol 150:1380–1393

    PubMed  CAS  Google Scholar 

  • Kashiwagi T, Madoka Y, Hirotsu N, Ishimaru K (2006) Locus prl5 improves lodging resistance of rice by delaying senescence and increasing carbohydrate reaccumulation. Plant Physiol Biochem 44:152–157

    Google Scholar 

  • Kim HJ, Ryu H, Hong SH, Woo HR, Lim PO, Lee IC, Sheen J, Nam HG, Hwang I (2006) Cytokinin-mediated control of leaf longevity by AHK3 through phosphorylation of ARR2 in Arabidopsis. Proc Nat Acad Sci USA 103:814–819

    PubMed  CAS  Google Scholar 

  • Kong ZS, Li MN, Yang WQ, Xu WY, Xue YB (2006) A novel nuclear-localized CCCH-type zinc finger protein, OsDOS, is involved in delaying leaf senescence in rice. Plant Physiol 141:1376–1388

    PubMed  CAS  Google Scholar 

  • Lenis JI, Calle F, Jaramillo G, Perez JC, Ceballos H, Cock JH (2006) Leaf retention and cassava productivity. Field Crops Res 95:126–134

    Google Scholar 

  • Leonhardt N, Kwak JM, Robert N, Waner D, Leonhardt G, Schroeder JI (2004) Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant. Plant Cell 16:596–615

    PubMed  CAS  Google Scholar 

  • Leopold AC (1961) Senescence in plant development. Science 134:1727–1732

    PubMed  CAS  Google Scholar 

  • Li Q, Robson PRH, Bettany AJE, Donnison IS, Thomas H, Scott IM (2004) Modification of senescence in ryegrass transformed with IPT under the control of a monocot senescence-enhanced promoter. Plant Cell Rep 22:816–821

    PubMed  CAS  Google Scholar 

  • Li XP, Ma YY, Li PL, Zhang LW, Wang Y, Zhang R, Wang NN (2005) RNAi-mediated knocking-down of rlpk2 gene retarded soybean leaf senescence. Chin Sci Bull 50:1218–1224

    CAS  Google Scholar 

  • Li S, Yin D, Wu F, Wang S, Deng Q, Tang Y, Zhou H, Li P (2007) Introduction of the PPF1 gene into rice (Oryza sativa L.) results in delayed leaf senescence. Euphytica 153:257–265

    CAS  Google Scholar 

  • Lim PO, Kim HJ, Nam HG (2007a) Leaf senescence. Ann Rev Plant Biol 58:115–136

    CAS  Google Scholar 

  • Lim PO, Kim Y, Breeze E, Koo JC, Woo HR, Ryu JS, Park DH, Beynon J, Tabrett A, Buchanan-Wollaston V, Nam HG (2007b) Overexpression of a chromatin architecture-controlling AT-hook protein extends leaf longevity and increases the post-harvest storage life of plants. Plant J 52:1140–1153

    PubMed  CAS  Google Scholar 

  • Lin YJ, Cao ML, Xu CG, Chen H, Wei J, Zhang QF (2002) Cultivating rice with delaying leaf senescence by P-SAG12-IPT gene transformation. Acta Bot Sin 44:1333–1338

    CAS  Google Scholar 

  • Lindsay WP, McAlister FM, Zhu Q, He XZ, Droge-Laser W, Hedrick S, Doerner P, Lamb C, Dixon RA (2002) KAP-2, a protein that binds to the H-box in a bean chalcone synthase promoter, is a novel plant transcription factor with sequence identity to the large subunit of human Ku autoantigen. Plant Mol Biol 49:503–514

    PubMed  CAS  Google Scholar 

  • Liu L, Zhou Y, Szczerba MW, Li X, Lin Y (2010) Identification and application of a rice senescence-associated promoter. Plant Physiol 153:1239–1249

    PubMed  CAS  Google Scholar 

  • Liu YD, Yin ZJ, Yu JW, Li J, Wei HL, Han XL, Shen FF (2012) Improved salt tolerance and delayed leaf senescence in transgenic cotton expressing the Agrobacterium IPT gene. Biol Plant 56:237–246

    Google Scholar 

  • Lopes MS, Reynolds MP, Manes Y, Singh RP, Crossa J, Braun HJ (2012) Genetic yield gains and changes in associated traits of CIMMYT spring bread wheat in a “historic” set representing 30 years of breeding. Crop Sci 52:1123–1131

    Google Scholar 

  • Luo YY, Gianfagna TJ, Janes HW, Huang B, Wang Z, Xing J (2005) Expression of the ipt gene with the AGPase S1 promoter in tomato results in unbranched roots and delayed leaf senescence. Plant Growth Regul 47:47–57

    Google Scholar 

  • Luo P, Ren Z, Wu X, Zhang H, Zhang H, Feng J (2006) Structural and biochemical mechanism responsible for the stay-green phenotype in common wheat. Chinese Sci Bull 51:2595–2603

    Google Scholar 

  • Ma QH (2008) Genetic engineering of cytokinins and their application to agriculture. Critical Rev Biotech 28:213–232

    CAS  Google Scholar 

  • Manian K, Natarajaratnam N, Ramasamy P, Mohanasundaram K (1987) Senescence and its role in soybean productivity. J Agron Crop Sci 159:202–205

    Google Scholar 

  • McCabe MS, Garratt LC, Schepers F, Jordi W, Stoopen GM, Davelaar E, van Rhijn JHA, Power JB, Davey MR (2001) Effects of P-SAG12-IPT gene expression on development and senescence in transgenic lettuce. Plant Physiol 127:505–516

    PubMed  CAS  Google Scholar 

  • Melzer S, Lens F, Gennen J, Vanneste S, Rohde A, Beeckman T (2008) Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana. Nature Gen 40:1489–1492

    CAS  Google Scholar 

  • Merewitz EB, Gianfagna T, Huang B (2010) Effects of SAG12-ipt and HSP18.2-ipt expression on cytokinin production, root growth, and leaf senescence in creeping bentgrass exposed to drought stress. J Am Soc Hortic Sci 135:230–239

    Google Scholar 

  • Merewitz EB, Gianfagna T, Huang B (2011) Protein accumulation in leaves and roots associated with improved drought tolerance in creeping bentgrass expressing an ipt gene for cytokinin synthesis. J Exp Bot 62:5311–5333

    Google Scholar 

  • Messmer R, Fracheboud Y, Bänziger M, Stamp P, Ribaut J-M (2011) Drought stress and tropical maize: QTLs for leaf greenness, plant senescence, and root capacitance. Field Crop Res 124:93–103

    Google Scholar 

  • Mothes K, Baudisch W (1958) Untersuchungen über die Reversibilität der Ausbleichung grüner Blätter. Flora 146:521–532

    CAS  Google Scholar 

  • Nambeesan S, Datsenka T, Ferruzzi MG, Malladi A, Mattoo AK, Handa AK (2010) Overexpression of yeast spermidine synthase impacts ripening, senescence and decay symptoms in tomato. Plant J 63:836–847

    PubMed  CAS  Google Scholar 

  • Naruoka Y, Sherman JD, Lanning SP, Blake NK, Martin JM, Talbert LE (2012) Genetic analysis of green leaf duration in spring wheat. Crop Sci 52:99–109

    Google Scholar 

  • Noh YS, Amasino RM (1999) Identification of a promotor region responsible for the senescence-specific expression of SAG12. Plant Mol Biol 41:181–194

    PubMed  CAS  Google Scholar 

  • Noodén LD (1988a) Whole plant senescence. In: Noodén LD, Leopold AC (eds) Senescence and aging in plants. Academic Press, San Diego, pp 392–439

    Google Scholar 

  • Noodén LD (1988b) The phenomena of senescence and aging. In: Noodé LD, Leopold AC (eds) Senescence and Alterung in plants. Academic Press, San Diego, pp 1–50

    Google Scholar 

  • Noodén LD, Penney JP (2001) Correlative controls of senescence and plant death in Arabidopsis thaliana (Brassicaceae). J Exp Bot 52:2151–2159

    PubMed  Google Scholar 

  • Noodén LD, Schneider MJ (2004) Light control of senescence. In: Noodén LD (ed) Plant cell death processes. Elsevier, Amsterdam, pp 375–383

    Google Scholar 

  • Noodén LD, Hillsberg JW, Schneider MJ (1996) Induction of leaf senescence in Arabidopsis thaliana by long days through a light-dosage effect. Physiol Plant 96:491–495

    Google Scholar 

  • Parrott DL, Downs EP, Fischer AM (2012) Control of barley (Hordeum vulgare L.) development and senescence by the interaction between a chromosome six grain protein content locus, day length, and vernalization. J Exp Bot 63:1329–1339

    PubMed  CAS  Google Scholar 

  • Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Op Plant Biol 14:290–295

    CAS  Google Scholar 

  • Peleg Z, Reguera M, Tumimbang E, Walia H, Blumwald E (2011) Cytokinin-mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water-stress. Plant Biotech J 9:747–758

    CAS  Google Scholar 

  • Peltonen-Sainio P (1993) Contribution of enhanced growth rate and associated physiological changes to yield formation of oats. Field Crops Res 33:269–281

    Google Scholar 

  • Peltonen-Sainio P, Forsman K, Poutala T (1997) Crop management effects on pre- and post-anthesis changes in leaf area index and leaf area duration and their contribution to grain yield and yield components in spring cereals. J Agr Crop Sci 179:47–61

    Google Scholar 

  • Pommel B, Gallais A, Coque M, Quillere I, Hirel B, Prioul JL, Andrieu B, Floriot M (2006) Carbon and nitrogen allocation and grain filling in three maize hybrids differing in leaf senescence. Eur J Agron 24:203–211

    Google Scholar 

  • Qin H, Gu Q, Zhang J, Sun L, Kuppu S, Zhang Y, Burow M, Payton P, Blumwald E, Zhang H (2011) Regulated expression of an isopentenyltransferase gene (IPT) in peanut significantly improves drought tolerance and increases yield under field conditions. Plant Cell Physiol 52:1904–1914

    PubMed  CAS  Google Scholar 

  • Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S, Blumwald E (2007) Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc Nat Ac Sci USA 104:19631–19636

    CAS  Google Scholar 

  • Rivero RM, Gimeno J, Van Deynze A, Walia H, Blumwald E (2010) Enhanced cytokinin synthesis in tobacco plants expressing P-SARK:IPT prevents the degradation of photosynthetic protein complexes during drought. Plant Cell Physiol 51:1929–1941

    PubMed  CAS  Google Scholar 

  • Robert-Seilaniantz A, Grant M, Jones JDG (2011) Hormone crosstalk in plant disease and defense: More than just Jasmonate–Salicylate antagonism. In: VanAlfen NK, Bruening G, Leach JE (eds) Ann Rev Phytopathol, vol 49, pp 317–343

  • Robson PRH, Smith H (1997) Fundamental and biotechnological applications of phytochrome transgenes. Plant Cell Environ 20:831–839

    CAS  Google Scholar 

  • Robson PRH, McCormac AC, Irvine AS, Smith H (1996) Genetic engineering of harvest index in tobacco through overexpression of a phytochrome gene. Nature Biotech 14:995–998

    CAS  Google Scholar 

  • Robson PRH, Donnison IS, Wang K, Frame B, Pegg SE, Thomas A, Thomas H (2004) Leaf senescence is delayed in maize expressing the Agrobacterium IPT gene under the control of a novel maize senescence-enhanced promoter. Plant Biotech J 2:101–112

    CAS  Google Scholar 

  • Rubio V, Bustos R, Irigoyen ML, Cardona-Lopez X, Rojas-Triana M, Paz-Ares J (2009) Plant hormones and nutrient signaling. Plant Mol Biol 69:361–373

    PubMed  CAS  Google Scholar 

  • Sakuraba Y, Balazadeh S, Tanaka R, Mueller-Roeber B, Tanaka A (2012) Overproduction of chl b retards senescence through transcriptional reprogramming in Arabidopsis. Plant Cell Physiol 53:505–517

    PubMed  CAS  Google Scholar 

  • Spano G, Fonzo ND, Perrotta C, Platani C, Ronga G, Lawlor DW, Napier JA, Shewry PR (2003) Physiological characterization of ‘stay green’ mutants in durum wheat. J Exp Bot 54:1415–1420

    Google Scholar 

  • Stamp P, Herzog H (1976) Untersuchungen zur Fahnenblattalterung und zum Kornwachstum einiger deutscher Sommerweizensorten (Triticum aestivum L.). Zeitschrift Pflanzenzüchtung 77:330–338

    Google Scholar 

  • Suzuki NOBU, Koussevitzky SHAI, Mittler RON, Miller GAD (2012) ROS and redox signaling in the response of plants to abiotic stress. Plant Cell Environ 35:259–270

    PubMed  CAS  Google Scholar 

  • Swartzberg D, Dai N, Gan S, Amasino RM, Granot D (2006) Effects of cytokinin production under two SAG promoters on senescence and development of tomato plants. Plant Biol 8:579–586

    PubMed  CAS  Google Scholar 

  • Sykorova B, Kuresova G, Daskalova S, Trckova M, Hoyerova K, Raimanova I, Motyka V, Travnickova A, Elliott MC, Kaminek M (2008) Senescence-induced ectopic expression of the A. tumefaciens ipt gene in wheat delays leaf senescence, increases cytokinin content, nitrate influx, and nitrate reductase activity, but does not affect grain yield. J Exp Bot 59:377–387

    PubMed  CAS  Google Scholar 

  • Thiele A, Herold M, Lenk I, Quail PH, Gatz C (1999) Heterologous expression of arabidopsis phytochrome B in transgenic potato influences photosynthetic performance and tuber development. Plant Physiol 120:73–81

    PubMed  CAS  Google Scholar 

  • Thomas H, Howarth CJ (2000) Five ways to stay green. J Exp Bot 51:329–337

    PubMed  CAS  Google Scholar 

  • Thomas H, Smart CM (1993) Crops that stay green. Ann Appl Biol 123:193–219

    Google Scholar 

  • Thomas H, Stoddart J (1980) Leaf senescence. Annu Rev Plant Physiol 31:83–111

    CAS  Google Scholar 

  • Thomas H, Thomas HM, Ougham H (2000) Annuality, perenniality and cell death. J Exp Bot 51:1781–1788

    PubMed  CAS  Google Scholar 

  • Thompson JE, Hopkins MT, Taylor C, Wang TW (2004) Regulation of senescence by eukaryotic translation initiation factor 5A: implications for plant growth and development. Trends Plant Sci 9:174–179

    PubMed  CAS  Google Scholar 

  • Tollenaar M, Daynard TB (1978) Leaf senescence in short-season maize hybrids. Can J Plant Sci 58:869–874

    Google Scholar 

  • Tollenaar M, Ahmadzadeh A, Lee EA (2004) Physiological basis of heterosis for grain yield in maize. Crop Sci 44:2086–2094

    Google Scholar 

  • Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298–1301

    PubMed  CAS  Google Scholar 

  • Vadez V, Deshpande SP, Kholova J, Hammer GL, Borrell AK, Talwar HS, Hash CT (2011a) Stay-green quantitative trait loci’s effects on water extraction, transpiration efficiency and seed yield depend on recipient parent background. Func Plant Biol 38:553–566

    Google Scholar 

  • Vadez V, Krishnamurthy L, Hash CT, Upadhyaya HD, Borrell AK (2011b) Yield, transpiration efficiency, and water-use variations and their interrelationships in the sorghum reference collection. Crop Past Sci 62:645–655

    Google Scholar 

  • Vaezi B, Bavei V, Shiran B (2010) Screening of barley genotypes for drought tolerance by agro-physiological traits in field condition. Afr J Agric Res 5:881–292

    Google Scholar 

  • Valente MAS, Faria J, Soares-Ramos JRL, Reis PAB, Pinheiro GL, Piovesan ND, Morais AT, Menezes CC, Cano MAO, Fietto LG, Loureiro ME, Aragao FJL, Fontes EPB (2009) The ER luminal binding protein (BiP) mediates an increase in drought tolerance in soybean and delays drought-induced leaf senescence in soybean and tobacco. J Exp Bot 60:533–546

    PubMed  CAS  Google Scholar 

  • Verma V, Foulkes MJ, Worland AJ, Sylvester-Bradley R, Caligari PDS, Snape JW (2004) Mapping quantitative trait loci for flag leaf senescence as a yield determinant in winter wheat under optimal and drought-stressed environments. Euphytica 135:255–263

    CAS  Google Scholar 

  • Wang TW, Lu L, Zhang CG, Taylor C, Thompson JE (2003) Pleiotropic effects of suppressing deoxyhypusine synthase expression in Arabidopsis thaliana. Plant Mol Biol 52:1223–1235

    PubMed  CAS  Google Scholar 

  • Wang TW, Wu W, Zhang CG, Nowack LM, Liu ZD, Thompson JE (2005a) Antisense suppression of deoxyhypusine synthase by vacuum-infiltration of Agrobacterium enhances growth and seed yield of canola. Physiol Plant 124:493–503

    CAS  Google Scholar 

  • Wang TW, Zhang C-G, Wu W, Nowack L, Madey E, Thompson JE (2005b) Antisense suppression of deoxyhypusine synthase in tomato delays fruit softening and alters growth and development. Plant Physiol 138:1372–1382

    PubMed  CAS  Google Scholar 

  • Weaver LM, Gan S, Quirino BF, Amasino RM (1998) A comparison of the expression patterns of several senescence-associated genes in response to stress and hormone treatment. Plant Mol Biol 37:455–469

    PubMed  CAS  Google Scholar 

  • Wingler A (2011) Interactions between flowering and senescence regulation and the influence of low temperature in Arabidopsis and crop plants. Ann Appl Biol 159:320–338

    CAS  Google Scholar 

  • Wingler A, von Schaewen A, Leegood RC, Lea PJ, Quick WP (1998) Regulation of leaf senescence by cytokinin, sugars, and light—effects on NADH-dependent hydroxypyruvate reductase. Plant Physiol 116:329–335

    CAS  Google Scholar 

  • Wingler A, Brownhill E, Pourtau N (2005) Mechanisms of the light-dependent induction of cell death in tobacco plants with delayed senescence. J Exp Bot 56:2897–2905

    PubMed  CAS  Google Scholar 

  • Woo HR, Goh CH, Park JH, Teyssendier de la Serva B, Kim JH, Paark VI, Nam HG (2002) Extended leaf longevity in the ore4-1 mutant of Arabidopsis with a reduced expression of a plastid ribosomal protein gene. Plant J 31:331–340

    PubMed  CAS  Google Scholar 

  • Wu K, Zhang L, Zhou C, Yu CW, Chaikam V (2008) HDA6 is required for jasmonate response, senescence and flowering in Arabidopsis. J Exp Bot 59:225–234

    PubMed  CAS  Google Scholar 

  • Wu A, Allu AD, Garapati P, Siddiqui H, Dortay H, Zanor MI, Asensi-Fabado MA, Munné-Bosch S, Antonio C, Tohge T, Fernie AR, Kaufmann K, Xue GP, Mueller-Roeber B, Balazadeh S (2012) JUNGBRUNNEN1, a reactive oxygen species responsive NAC transcription factor, regulates longevity in Arabidopsis. Plant Cell 24:482–506

    PubMed  CAS  Google Scholar 

  • Yan JQ, He CX, Wang J, Mao ZH, Holaday SA, Allen RD, Zhang H (2004) Overexpression of the Arabidopsis 14–3-3 protein GF14 lambda in cotton leads to a “Stay-Green” phenotype and improves stress tolerance under moderate drought conditions. Plant Cell Physiol 45:1007–1014

    PubMed  CAS  Google Scholar 

  • Yang JC, Zhang JH, Wang ZQ, Zhu QS, Liu LJ (2003) Involvement of abscisic acid and cytokinins in the senescence and remobilization of carbon reserves in wheat subjected to water stress during grain filling. Plant Cell Environ 26:1621–1631

    CAS  Google Scholar 

  • Young TE, Giesler-Lee J, Gallie DR (2004) Senescence-induced expression of cytokinin reverses pistil abortion during maize flower development. Plant J 38:910–922

    PubMed  CAS  Google Scholar 

  • Zapata JM, Guéra A, Esteban-Carrasco A, Martín M, Sabater B (2005) Chloroplasts regulate leaf senescence: delayed senescence in transgenic ndhF-defective tobacco. Cell Death Differ 12:1277–1284

    PubMed  CAS  Google Scholar 

  • Zavaleta-Mancera HA, Thomas BJ, Thomas H, Scott IM (1999) Regreening of senescent Nicotiana leaves: II. Redifferentiation of plastids. J Exp Bot 50:1683–1689

    CAS  Google Scholar 

  • Zhang ZL, Xie Z, Zou XL, Casaretto J, Ho THD, Shen QXJ (2004) A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiol 134:1500–1513

    PubMed  CAS  Google Scholar 

  • Zhang CJ, Chen GX, Gao XX, Chu CJ (2006) Photosynthetic decline in flag leaves of two field-grown spring wheat cultivars with different senescence properties. S Afr J Bot 72:15–23

    Google Scholar 

  • Zhang MP, Zhang CJ, Yu GH, Jiang YZ, Strasser RJ, Yuan ZY, Yang XS, Chen GX (2010) Changes in chloroplast ultrastructure, fatty acid components of thylakoid membrane and chlorophyll a fluorescence transient in flag leaves of a super-high-yield hybrid rice and its parents during the reproductive stage. J Plant Physiol 167:277–285

    PubMed  CAS  Google Scholar 

  • Zheng MS, Takahashi H, Miyazaki A, Hamamoto H, Shah J, Yamaguchi I, Kusano T (2004) Up-regulation of Arabidopsis thaliana NHL10 in the hypersensitive response to Cucumber mosaic virus infection and in senescing leaves is controlled by signalling pathways that differ in salicylate involvement. Planta 218:740–750

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Susheng Gan for encouraging us to write this article and also for stimulating discussions. We also thank the two anonymous reviewers of our manuscript for valuable suggestions. Sascha Ludwig (CAU, Kiel, Germany) is thanked for providing the photos of tobacco transformants. We acknowledge funding of the European Commission in the frame of the MC-ITN “CropLife”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Krupinska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gregersen, P.L., Culetic, A., Boschian, L. et al. Plant senescence and crop productivity. Plant Mol Biol 82, 603–622 (2013). https://doi.org/10.1007/s11103-013-0013-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-013-0013-8

Keywords

Navigation