Skip to main content
Log in

Identification of superoxide production by Arabidopsis thaliana aldehyde oxidases AAO1 and AAO3

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Plant aldehyde oxidases (AOs) have gained great attention during the last years as they catalyze the last step in the biosynthesis of the phytohormone abscisic acid by oxidation of abscisic aldehyde. Furthermore, oxidation of indole-3-acetaldehyde by AOs is likely to represent one route to produce another phytohormone, indole-3-acetic acid, and thus, AOs play important roles in many aspects of plant growth and development. In the present work we demonstrate that heterologously expressed AAO1 and AAO3, two prominent members of the AO family from Arabidopsis thaliana, do not only generate hydrogen peroxide but also superoxide anions by transferring aldehyde-derived electrons to molecular oxygen. In support of this, superoxide production has also been found for native AO proteins in Arabidopsis leaf extracts. In addition to their aldehyde oxidation activity, AAO1 and AAO3 were found to exhibit NADH oxidase activity, which likewise is associated with the production of superoxide anions. According to these results and due to the fact that molecular oxygen is the only known physiological electron acceptor of AOs, the production of hydrogen peroxide and/or superoxide has to be considered in any physiological condition in which aldehydes or NADH serve as substrate for AOs. In this respect, conditions such as natural senescence and stress-induced stomatal movement, which both require simultaneously elevated levels of abscisic acid and hydrogen peroxide/superoxide, are likely to benefit from AOs in two ways, namely by formation of abscisic acid and by concomitant formation of reactive oxygen species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

AO:

Aldehyde oxidase

DCIP:

2,6-dichloroindophenol

DPI:

Diphenylene iodonium

FAD:

Flavin adenine dinucleotide

HRP:

Horseradish peroxidase

Moco:

Molybdenum cofactor

MTT:

3[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium-bromide

PMS:

Phenazine methosulfate

P. pastoris :

Pichia pastoris

SOD:

Superoxide dismutase

XDH:

Xanthine dehydrogenase

XTT:

2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide sodium salt

References

  • Aharoni N, Richmond AE (1978) Endogenous gibberellin and abscisic acid content as related to senescence of detached lettuce leaves. Plant Physiol 62:224–228

    Article  PubMed  CAS  Google Scholar 

  • Akaba S, Leydecker MT, Moureaux T, Oritani T, Koshiba T (1998) Aldehyde oxidase in wild type and abal mutant leaves of Nicotiana plumbaginifolia. Plant Cell Physiol 39:1281–1286

    Article  CAS  Google Scholar 

  • Akaba S, Seo M, Dohmae N, Takio K, Sekimoto H, Kamiya Y, Furuya N, Komano T, Koshiba T (1999) Production of homo- and hetero-dimeric isozymes from two aldehyde oxidase genes of Arabidopsis thaliana. J Biochem 126:395–401

    Article  PubMed  CAS  Google Scholar 

  • Askerlund P, Larsson C (1991) Transmembrane electron transport in plasma membrane vesicles loaded with an NADH-generating system or ascorbate. Plant Physiol 96:1178–1184

    Article  PubMed  CAS  Google Scholar 

  • Badwey JA, Robinson JM, Karnovsky MJ, Karnovsky ML (1981) Superoxide production by an unusual aldehyde oxidase in guinea pig granulocytes. Characterization and cytochemical localization. J Biol Chem 256:3479–3486

    PubMed  CAS  Google Scholar 

  • Barabás KN, Omarov RT, Erdei L, Lips HS (2000) Distribution of the Mo-enzymes aldehyde oxidase, xanthine dehydrogenase and nitrate reductase in maize (Zea mays L.) nodal roots as affected by nitrogen and salinity. Plant Sci 155:49–58

    Article  Google Scholar 

  • Barrero JM, Rodríguez PL, Quesada V, Piqueras P, Ponce MR, Micol JL (2006) Both abscisic acid (ABA)-dependent and ABA-independent pathways govern the induction of NCED3, AAO3 and ABA1 in response to salt stress. Plant Cell Environ 29:2000–2008

    Article  PubMed  CAS  Google Scholar 

  • Bittner F, Oreb M, Mendel RR (2001) ABA3 is a molybdenum cofactor sulfurase required for activation of aldehyde oxidase and xanthine dehydrogenase in Arabidopsis thaliana. J Biol Chem 276:40381–40384

    Article  PubMed  CAS  Google Scholar 

  • Bolwell GP, Davies DR, Gerrish C, Auh CK, Murphy TM (1998) Comparative biochemistry of the oxidative burst produced by rose and french bean cells reveals two distinct mechanisms. Plant Physiol 116:1379–1385

    Article  PubMed  CAS  Google Scholar 

  • Bower PJ, Brown HM, Purves WK (1978) Cucumber seedling indoleacetaldehyde oxidase. Plant Physiol 61:107–110

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Byrne RS, Hänsch R, Mendel RR, Hille R (2009) Oxidative half-reaction of Arabidopsis thaliana sulfite oxidase: generation of superoxide by a peroxisomal enzyme. J Biol Chem 284:35479–35484

    Article  PubMed  CAS  Google Scholar 

  • Chambon P (1996) A decade of molecular biology of retinoic acid receptors. Faseb J 10:940–954

    PubMed  CAS  Google Scholar 

  • Desikan R, Cheung MK, Bright J, Henson D, Hancock JT, Neill SJ (2004) ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells. J Exp Bot 55:205–212

    Article  PubMed  CAS  Google Scholar 

  • Endo A, Sawada Y, Takahashi H, Okamoto M, Ikegami K, Koiwai H, Seo M, Toyomasu T, Mitsuhashi W, Shinozaki K, Nakazono M, Kamiya Y, Koshiba T, Nambara E (2008) Drought induction of Arabidopsis 9-cis-epoxycarotenoid dioxygenase occurs in vascular parenchyma cells. Plant Physiol 147:1984–1993

    Article  PubMed  CAS  Google Scholar 

  • Fedorova E, Redondo FJ, Koshiba T, Pueyo JJ, de Felipe MR, Lucas MM (2005) Aldehyde oxidase (AO) in the root nodules of Lupinus albus and Medicago truncatula: identification of AO in meristematic and infection zones. Mol Plant Microbe Interact 18:405–413

    Article  PubMed  CAS  Google Scholar 

  • Felsted RL, Chu AE, Chaykin S (1973) Purification and properties of the aldehyde oxidases from hog and rabbit livers. J Biol Chem 248:2580–2587

    PubMed  CAS  Google Scholar 

  • Garattini E, Mendel RR, Romao MJ, Wright R, Terao M (2003) Mammalian molybdo-flavoenzymes, an expanding family of proteins: structure, genetics, regulation, function and pathophysiology. Biochem J 372:15–32

    Article  PubMed  CAS  Google Scholar 

  • Garattini E, Fratelli M, Terao M (2008) Mammalian aldehyde oxidases: genetics, evolution and biochemistry. Cell Mol Life Sci 65:1019–1048

    Article  PubMed  CAS  Google Scholar 

  • González-Guzmán M, Abia D, Salinas J, Serrano R, Rodríguez PL (2004) Two new alleles of the abscisic aldehyde oxidase 3 gene reveal its role in abscisic acid biosynthesis in seeds. Plant Physiol 135:325–333

    Article  PubMed  Google Scholar 

  • Hall WW, Krenitsky TA (1986) Aldehyde oxidase from rabbit liver: specificity toward purines and their analogs. Arch Biochem Biophys 251:36–46

    Article  PubMed  CAS  Google Scholar 

  • Hänsch R, Lang C, Riebeseel E, Lindigkeit R, Gessler A, Rennenberg H, Mendel RR (2006) Plant sulfite oxidase as novel producer of H2O2: combination of enzyme catalysis with a subsequent non-enzymatic reaction step. J Biol Chem 281:6884–6888

    Article  PubMed  Google Scholar 

  • Harrison R (2002) Structure and function of xanthine oxidoreductase: where are we now? Free Radic Biol Med 33:774–797

    Article  PubMed  CAS  Google Scholar 

  • Hesberg C, Hansch, R, Mendel RR, Bittner F (2004) Tandem orientation of duplicated xanthine dehydrogenase genes from Arabidopsis thaliana: differential gene expression and enzyme activities. J Biol Chem 279:13547–13554

    Google Scholar 

  • Hille R (1996) The mononuclear molybdenum enzymes. Chem Rev 96:2757–2816

    Article  PubMed  CAS  Google Scholar 

  • Hille R (2005) Molybdenum-containing hydroxylases. Arch Biochem Biophys 433:107–116

    Article  PubMed  CAS  Google Scholar 

  • Hille R, Nishino T, Bittner F (2011) Molybdenum enzymes in higher organisms. Coord Chem Rev 255:1179–1205

    Article  PubMed  CAS  Google Scholar 

  • Hoff T, Frandsen GI, Rocher A, Mundy J (1998) Biochemical and genetic characterization of three molybdenum cofactor hydroxylases in Arabidopsis thaliana. Biochim Biophys Acta 1398:397–402

    Article  PubMed  CAS  Google Scholar 

  • Horecker BL, Heppel LA (1949) The reduction of cytochrome c by xanthine oxidase. J Biol Chem 178:683–690

    PubMed  CAS  Google Scholar 

  • Huang DY, Furukawa A, Ichikawa Y (1999) Molecular cloning of retinal oxidase/aldehyde oxidase cDNAs from rabbit and mouse livers and functional expression of recombinant mouse retinal oxidase cDNA in Escherichia coli. Arch Biochem Biophys 364:264–272

    Article  PubMed  CAS  Google Scholar 

  • Jiang M, Zhang J (2002) Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. J Exp Bot 53:2401–2410

    Article  PubMed  CAS  Google Scholar 

  • Koiwai H, Akaba S, Seo M, Komano T, Koshiba T (2000) Functional expression of two Arabidopsis aldehyde oxidases in the yeast Pichia pastoris. J Biochem 127:659–664

    Article  PubMed  CAS  Google Scholar 

  • Koiwai H, Nakaminami K, Seo M, Mitsuhashi W, Toyomasu T, Koshiba T (2004) Tissue-specific localization of an abscisic acid biosynthetic enzyme, AAO3, in Arabidopsis. Plant Physiol 134:1697–1707

    Article  PubMed  CAS  Google Scholar 

  • Koshiba T, Saito E, Ono N, Yamamoto N, Sato M (1996) Purification and properties of flavin- and molybdenum-containing aldehyde oxidase from coleoptiles of maize. Plant Physiol 110:781–789

    PubMed  CAS  Google Scholar 

  • Krenitsky TA, Neil SM, Elion GB, Hitchings GH (1972) A comparison of the specificities of xanthine oxidase and aldehyde oxidase. Arch Biochem Biophys 150:585–599

    Article  PubMed  CAS  Google Scholar 

  • Kundu TK, Hille R, Velayutham M, Zweier JL (2007) Characterization of superoxide production from aldehyde oxidase: an important source of oxidants in biological tissues. Arch Biochem Biophys 460:113–121

    Article  PubMed  CAS  Google Scholar 

  • Kundu TK, Velayutham M, Zweier JL (2012) Aldehyde oxidase functions as a superoxide generating NADH oxidase: an important redox regulated pathway of cellular oxygen radical formation. Biochemistry 51:2930–2939

    Article  PubMed  CAS  Google Scholar 

  • Levine A, Tenhaken R, Dixon R, Lamb C (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583–593

    Article  PubMed  CAS  Google Scholar 

  • Link EM, Riley PA (1988) Role of hydrogen peroxide in the cytotoxicity of the xanthine/xanthine oxidase system. Biochem J 249:391–399

    PubMed  CAS  Google Scholar 

  • Mahro M, Coelho C, Trincão J, Rodrigues D, Terao M, Garattini E, Saggu M, Lendzian F, Hildebrandt P, Romão MJ, Leimkühler S (2011) Characterization and crystallization of mouse aldehyde oxidase 3: from mouse liver to Escherichia coli heterologous protein expression. Drug Metab Dispos 39:1939–1945

    Article  PubMed  CAS  Google Scholar 

  • Marin E, Marion-Poll A (1997) Tomato flacca mutant is impaired in ABA aldehyde oxidase and xanthine dehydrogenase activities. Plant Phys Biochem 35:369–372

    CAS  Google Scholar 

  • Massey V (1959) The microestimation of succinate and the extinction coefficient of cytochrome c. Biochim Biophys Acta 34:255–256

    Article  PubMed  CAS  Google Scholar 

  • Massey V, Edmondson D (1970) On the mechanism of inactivation of xanthine oxidase by cyanide. J Biol Chem 244:1682–1691

    Google Scholar 

  • Melhorn V, Matsumi K, Koiwai H, Ikegami K, Okamoto M, Nambara E, Bittner F, Koshiba T (2008) Transient expression of AtNCED3 and AAO3 genes in guard cells causes stomatal closure in Vicia faba. J Plant Res 121:125–131

    Article  PubMed  CAS  Google Scholar 

  • Min X, Okada K, Brockmann B, Koshiba T, Kamiya Y (2000) Molecular cloning and expression patterns of three putative functional aldehyde oxidase genes and isolation of two aldehyde oxidase pseudogenes in tomato. Biochim Biophys Acta 1493:337–341

    Article  PubMed  CAS  Google Scholar 

  • Mira L, Maia L, Barreira L, Manso CF (1995) Evidence for free radical generation due to NADH oxidation by aldehyde oxidase during ethanol metabolism. Arch Biochem Biophys 318:53–58

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–309

    Article  PubMed  CAS  Google Scholar 

  • Nishino T, Nishino T (1989) The nicotinamide adenine dinucleotide-binding site of chicken liver xanthine dehydrogenase. Evidence for alteration of the redox potential of the flavin by NAD binding or modification of the NAD-binding site and isolation of a modified peptide. J Biol Chem 264:5468–5473

    PubMed  CAS  Google Scholar 

  • Omarov R, Draeger D, Tischner R, Lips H (2003) Aldehyde oxidase isoforms and subunit composition in roots of barley as affected by ammonium and nitrate. Physiol Plant 117:337–342

    Article  PubMed  CAS  Google Scholar 

  • Ori N, Eshed Y, Pinto P, Paran I, Zamir D, Fluhr R (1997) TAO1, a representative of the molybdenum cofactor containing hydroxylases from tomato. J Biol Chem 272:1019–1025

    Article  PubMed  CAS  Google Scholar 

  • Pei ZM, Murata Y, Benning G, Thomine S, Klüsener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406:731–734

    Article  PubMed  CAS  Google Scholar 

  • Raab S, Drechsel G, Zarepour M, Hartung W, Koshiba T, Bittner F, Hoth S (2009) Identification of a novel E3 ubiquitin ligase that is required for suppression of premature senescence in Arabidopsis. Plant J 59:39–51

    Google Scholar 

  • Rajagopal R (1971) Metabolism of indole-3-acetaldehyde. III. Some characteristics of the aldehyde oxidase from Avena coleoptiles. Physiol Plant 24:272–281

    Article  CAS  Google Scholar 

  • Rodríguez AA, Grunberg KA, Taleisnik EL (2002) Reactive oxygen species in the elongation zone of maize leaves are necessary for leaf extension. Plant Phys 129:1627–1632

    Article  Google Scholar 

  • Rodríguez-Trelles F, Tarrío R, Ayala FJ (2003) Convergent neofunctionalization by positive Darwinian selection after ancient recurrent duplications of the xanthine dehydrogenase gene. Proc Natl Acad Sci USA 100:13413–13417

    Article  PubMed  Google Scholar 

  • Scandalios JG (2005) Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz J Med Biol Res 38:995–1014

    Article  PubMed  CAS  Google Scholar 

  • Schopfer P, Plachy C, Frahry G (2001) Release of reactive oxygen intermediates (superoxide radicals, hydrogen peroxide, and hydroxyl radicals) and peroxidase in germinating radish seeds controlled by light, gibberellin, and abscisic acid. Plant Physiol 125:1591–1602

    Article  PubMed  CAS  Google Scholar 

  • Schwartz SH, Léon-Kloosterziel KM, Koornneef M, Zeevaart JA (1997) Biochemical characterization of the aba2 and aba3 mutants in Arabidopsis thaliana. Plant Physiol 114:161–166

    Article  PubMed  CAS  Google Scholar 

  • Sekimoto H, Seo M, Dohmae N, Takio K, Kamiya Y, Koshiba T (1997) Cloning and molecular characterization of plant aldehyde oxidase. J Biol Chem 272:15280–15285

    Article  PubMed  CAS  Google Scholar 

  • Seo M, Akaba S, Oritani T, Delarue M, Bellini C, Caboche M, Koshiba T (1998) Higher activity of an aldehyde oxidase in the auxin-overproducing superroot1 mutant of Arabidopsis thaliana. Plant Physiol 116:687–693

    Article  PubMed  CAS  Google Scholar 

  • Seo M, Koiwai H, Akaba S, Komano T, Oritani T, Kamiya Y, Koshiba T (2000a) Abscisic aldehyde oxidase in leaves of Arabidopsis thaliana. Plant J 23:481–488

    Article  PubMed  CAS  Google Scholar 

  • Seo M, Peeters AJ, Koiwai H, Oritani T, Marion-Poll A, Zeevaart JA, Koornneef M, Kamiya Y, Koshiba T (2000b) The Arabidopsis aldehyde oxidase 3 (AAO3) gene product catalyzes the final step in abscisic acid biosynthesis in leaves. Proc Natl Acad Sci USA 97:12908–12913

    Article  PubMed  CAS  Google Scholar 

  • Seo M, Aoki H, Koiwai H, Kamiya Y, Nambara E, Koshiba T (2004) Comparative studies on the Arabidopsis aldehyde oxidase (AAO) gene family revealed a major role of AAO3 in ABA biosynthesis in seeds. Plant Cell Physiol 45:1694–1703

    Article  PubMed  CAS  Google Scholar 

  • Shaw S, Jayatilleke E (1990) The role of aldehyde oxidase in ethanol-induced hepatic lipid peroxidation in the rat. Biochem J 268:579–583

    PubMed  CAS  Google Scholar 

  • Sigruener A, Buechler C, Orsó E, Hartmann A, Wild PJ, Terracciano L, Roncalli M, Bornstein SR, Schmitz G (2007) Human aldehyde oxidase 1 interacts with ATP-binding cassette transporter-1 and modulates its activity in hepatocytes. Horm Metab Res 39:781–789

    Article  PubMed  CAS  Google Scholar 

  • Sindhu RK, Griffin DH, Walton DC (1990) Abscisic aldehyde is an intermediate in the enzymatic conversion of xanthoxin to abscisic acid in Phaseolus vulgaris L. leaves. Plant Physiol 93:689–694

    Article  PubMed  CAS  Google Scholar 

  • Taylor NJ, Cowan AK (2004) Xanthine dehydrogenase and aldehyde oxidase impact plant hormone homeostasis and affect fruit size in ‘Hass’ avocado. J Plant Res 117:121–130

    Article  PubMed  CAS  Google Scholar 

  • Terao M, Kurosaki M, Marini M, Vanoni MA, Saltini G, Bonetto V, Bastone A, Federico C, Saccone S, Fanelli R, Salmona M, Garattini E (2001) Purification of the aldehyde oxidase homolog 1 (AOH1) protein and cloning of the AOH1 and aldehyde oxidase homolog 2 (AOH2) genes. Identification of a novel molybdo-flavoprotein gene cluster on mouse chromosome 1. J Biol Chem 276:46347–46363

    Article  PubMed  CAS  Google Scholar 

  • Turner NA, Doyle WA, Ventom AM, Bray RC (1995) Properties of rabbit liver aldehyde oxidase and the relationship of the enzyme to xanthine oxidase and dehydrogenase. Eur J Biochem 232:646–657

    Article  PubMed  CAS  Google Scholar 

  • Vandelle E, Delledonne M (2011) Peroxynitrite formation and function in plants. Plant Sci 181:534–539

    Article  PubMed  CAS  Google Scholar 

  • Verslues PE, Zhu JK (2005) Before and beyond ABA: upstream sensing and internal signals that determine ABA accumulation and response under abiotic stress. Biochem Soc Trans 33:375–379

    Article  PubMed  CAS  Google Scholar 

  • Wang P, Song CP (2008) Guard-cell signalling for hydrogen peroxide and abscisic acid. New Phytol 178:703–718

    Article  PubMed  CAS  Google Scholar 

  • Ward DE, Gai Y (1997) Simple methods for the preparation of enantiomerically pure abscisic acid (ABA) analogues from (S)-(+)-ABA. Synth Commun 24:2133–2142

    Article  Google Scholar 

  • Wright RM, McManaman JL, Repine JE (1999) Alcohol-induced breast cancer: a proposed mechanism. Free Radic Biol Med 26:348–354

    Article  PubMed  CAS  Google Scholar 

  • Xiong L, Zhu JK (2003) Regulation of abscisic acid biosynthesis. Plant Physiol 133:29–36

    Article  PubMed  CAS  Google Scholar 

  • Yesbergenova Z, Yang G, Oron E, Soffer D, Flur R, Sagi M (2005) The plant Mo-hydroxylases aldehyde oxidase and xanthine dehydrogenase have distinct reactive oxygen species signatures and are induced by drought and abscisic acid. Plant J 42:862–876

    Article  PubMed  CAS  Google Scholar 

  • Yoshihara S, Tatsumi K (1985) Guinea pig liver aldehyde oxidase as a sulfoxide reductase: its purification and characterization. Arch Biochem Biophys 242:213–224

    Article  PubMed  CAS  Google Scholar 

  • Zarepour M, Kaspari K, Stagge S, Rethmeier R, Mendel RR, Bittner F (2010) Xanthine dehydrogenase AtXDH1 from Arabidopsis thaliana is a potent producer of superoxide anions via its NADH oxidase activity. Plant Mol Biol 72:301–310

    Google Scholar 

  • Zdunek E, Lips SH (2001) Transport and accumulation rates of abscisic acid and aldehyde oxidase activity in Pisum sativum L. in response to suboptimal growth conditions. J Exp Bot 52:1269–1276

    Article  PubMed  CAS  Google Scholar 

  • Zdunek-Zastocka E (2008) Molecular cloning, characterization and expression analysis of three aldehyde oxidase genes from Pisum sativum L. Plant Physiol Biochem 46:19–28

    Article  PubMed  CAS  Google Scholar 

  • Zdunek-Zastocka E, Omarov RT, Koshiba T, Lips HS (2004) Activity and protein level of AO isoforms in pea plants (Pisum sativum L.) during vegetative development and in response to stress conditions. J Exp Bot 55:1361–1369

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Zhang L, Dong F, Gao J, Galbraith DW, Song CP (2001) Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiol 126:1438–1448

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann P, Heinlein C, Orendi G, Zentgraf U (2006) Senescence-specific regulation of catalases in Arabidopsis thaliana (L.) Heynh. Plant Cell Environ 29:1049–1060

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Victoria Michael and Marion Kay (TU Braunschweig) for excellent technical assistance. This work was supported by the Deutsche Forschungsgemeinschaft (DFG grant Bi 1075/2-1 to FB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Bittner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 192 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zarepour, M., Simon, K., Wilch, M. et al. Identification of superoxide production by Arabidopsis thaliana aldehyde oxidases AAO1 and AAO3. Plant Mol Biol 80, 659–671 (2012). https://doi.org/10.1007/s11103-012-9975-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-012-9975-1

Keywords

Navigation