Skip to main content
Log in

Overexpression of two chrysanthemum DgDREB1 group genes causing delayed flowering or dwarfism in Arabidopsis

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

We isolated 13 DREB1 (dehydration responsive element binding factor 1) genes from chrysanthemum and further divided them into three groups, DgDREB1A, DgDREB1B and DgDREB1C, based on the phylogenetic analysis. Each group showed their unique expression patterns under cold, dehydration and salt stress conditions. Arabidopsis plants overexpressing DgDREB1A (1A plants) exhibited significantly stronger tolerance to freezing and drought than those overexpressing DgDREB1B (1B plants) and the control plants. In addition, 1A plants showed delayed flowering, but not dwarfism; while 1B plants showed dwarfism, but not delayed flowering. In 1A plants, the expression of three stress-related DREB1-downstream genes, COR47, COR15A, and RD29A, was strongly induced while the expression of CO and FT, two photoperiod responsive flowering-time genes, was inhibited. In 1B plants, the expression of GA2ox7, a GA-deactivation enzyme gene, was dramatically enhanced. The results above strongly suggest that members from different DgDREB1 groups may have distinct effects on plant development: DgDREB1A may be involved in photoperiod-related flowering-time determination and DgDREB1B in GA-mediated plant development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Achard P, Gong F, Cheminant S, Alioua M, Hedden P, Genschik P (2008) The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell 20:2117–2129. doi:10.1105/tpc.108.058941

    Article  PubMed  CAS  Google Scholar 

  • Badawi M, Danyluk J, Boucho B, Houde M, Sarhan F (2007) The CBF gene family in hexaploid wheat and its relationship to the phylogenetic complexity of cereal CBFs. Mol Genet Genomics 277:533–554. doi:10.1007/s00438-006-0206-9

    Article  PubMed  CAS  Google Scholar 

  • Baker SS, Wilhelm KS, Thomashow MF (1994) The 5′-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol Biol 24:701–713. doi:10.1007/BF00029852

    Article  PubMed  CAS  Google Scholar 

  • Bhatnagar-Mathur P, Devi MJ, Reddy DS, Lavanya M, Vadez V, Serraj R, Yamaguchi-Shinozaki K, Sharma KK (2007) Stress-inducible expression of AtDREB1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water-limiting conditions. Plant Cell Rep 26:2071–2082. doi:10.1007/s00299-007-0406-8

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743. doi:10.1046/j.1365-313x.1998.00343.x

    Article  PubMed  CAS  Google Scholar 

  • Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozak K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33:751–763. doi:10.1046/j.1365-313X.2003.01661.x

    Article  PubMed  CAS  Google Scholar 

  • Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690. doi:10.1105/tpc.003483

    Article  PubMed  CAS  Google Scholar 

  • Gao MJ, Allard G, Byass L, Flanagan AM, Singh J (2002) Regulation and characterization of four CBF transcription factors from Brassica napus. Plant Mol Biol 49:459–471. doi:10.1023/A:1015570308704

    Article  PubMed  CAS  Google Scholar 

  • Gao SQ, Xu HJ, Cheng XG, Chen M, Xu ZS, Li LC, Ye XG, Du LP, Hao XY, Ma YZ (2005) Improvement of wheat drought and salt tolerance by expression of a stress inducible transcription factor GmDREB of soybean (Glycine max). Chin Sci Bull 50:2714–2723. doi:10.1360/982005-1234

    Article  CAS  Google Scholar 

  • Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold induced COR gene expression. Plant J 16:433–442. doi:10.1046/j.1365-313x.1998.00310.x

    Article  PubMed  CAS  Google Scholar 

  • Gilmour SJ, Fowler SG, Thomashow MF (2004) Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities. Plant Mol Biol 54:767–781. doi:10.1023/B:PLAN.0000040902.06881.d4

    Article  PubMed  CAS  Google Scholar 

  • Haake V, Cook D, Riechmann JL, Pineda O, Thomashow MF, Zhang JZ (2002) Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol 130:639–648. doi:10.1104/pp.006478

    Article  PubMed  CAS  Google Scholar 

  • Hong B, Tong Z, Ma N, Kasuga M, Yamaguchi-Shinozaki K, Gao JP (2006a) Expression of Arabidopsis DREB1A gene in transgenic chrysanthemum enhances tolerance to low temperature. J Hortic Sci Biot 81:1002–1008

    CAS  Google Scholar 

  • Hong B, Tong Z, Ma N, Li JK, Kasuga M, Yamaguchi-Shinozaki K, Gao JP (2006b) Heterologous expression of the AtDREB1A gene in chrysanthemum increases drought and salt stress tolerance. Sci China Ser C 49:436–445. doi:10.1007/s11427-006-2014-1

    Article  CAS  Google Scholar 

  • Hsieh TH, Lee JT, Charng YY, Chan MT (2002a) Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol 130:618–626. doi:10.1104/pp.006783

    Article  PubMed  CAS  Google Scholar 

  • Hsieh TH, Lee JT, Yang PT, Chiu LH, Charng YY, Wang YC, Chan MT (2002b) Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol 129:1086–1094. doi:10.1104/pp.003442

    Article  PubMed  CAS  Google Scholar 

  • Huang B, Jin LG, Liu JY (2007) Molecular cloning and functional characterization of a DREB1/CBF-like gene (GhDREB1L) from cotton. Sci China Ser C 50:7–14. doi:10.1007/s11427-007-0010-8

    Article  Google Scholar 

  • Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol 47:141–153. doi:10.1093/pcp/pci230

    Article  PubMed  CAS  Google Scholar 

  • Jaglo KR, Kleff S, Amundsen KL, Zhang X, Haake V, Zhang JZ, Deits T, Thomashow MF (2001) Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiol 127:910–917. doi:10.1104/pp.010548

    Article  PubMed  CAS  Google Scholar 

  • Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106. doi:10.1126/science.280.5360.104

    Article  PubMed  CAS  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biot 17:287–291. doi:10.1038/7036

    Article  CAS  Google Scholar 

  • Kim YH, Yang KS, Ryu SH, Kim KY, Song WK, Kwon SY, Lee HS, Bang JW, Kwak SS (2008) Molecular characterization of a cDNA encoding DRE-binding transcription factor from dehydration-treated fibrous roots of sweetpotato. Plant Physiol Biochem 46:196–204. doi:10.1016/j.plaphy.2007.09.012

    Article  PubMed  CAS  Google Scholar 

  • Lee SC, Huh KW, An K, An G, Kim SR (2004) Ectopic expression of a cold-inducible transcription factor, CBF1/DREB1b, in transgenic rice (Oryza sativa L.). Mol Cells 18:107–114

    PubMed  CAS  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    Article  PubMed  CAS  Google Scholar 

  • Magome H, Yamaguchi S, Hanada A, Kamiya Y, Oda K (2004) Dwarf and delayed-flowering 1, a novel Arabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor. Plant J 37:720–729. doi:10.1111/j.1365-313X.2003.01998.x

    Article  PubMed  CAS  Google Scholar 

  • Magome H, Yamaguchi S, Hanada A, Kamiya YJ, Oda K (2008) The DDF1 transcriptional activator upregulates expression of a gibberellin-deactivating gene, GA2ox7, under high-salinity stress in Arabidopsis. Plant J 56:613–626. doi:10.1111/j.1365-313X.2008.03627.x

    Article  PubMed  CAS  Google Scholar 

  • Maruyama K, Sakuma Y, Kasuga M, Ito Y, Seki M, Goda H, Shimada Y, Yoshida S, Shinozaki K, Yamaguchi-Shinozaki K (2004) Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J 38:982–993. doi:10.1111/j.1365-313X.2004.02100.x

    Article  PubMed  CAS  Google Scholar 

  • Mizuno S, Hirasawa Y, Sonoda M, Nakagawa H, Sato T (2006) Isolation and characterization of three DREB/ERF-type transcription factors from melon (Cucumis melo). Plant Sci 170:1156–1163. doi:10.1016/j.plantsci.2006.02.005

    Article  CAS  Google Scholar 

  • Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140:411–432. doi:10.1104/pp.105.073783

    Article  PubMed  CAS  Google Scholar 

  • Novillo F, Medina J, Salinas J (2007) Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. Proc Natl Acad Sci USA 104:21002–21007. doi:10.1073/pnas.0705639105

    Article  PubMed  CAS  Google Scholar 

  • Okamuro JK, Caster B, Villarroel R, Montagu MV, Jofuku KD (1997) The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc Natl Acad Sci USA 94:7076–7081. doi:10.1073/pnas.94.13.7076

    Article  PubMed  CAS  Google Scholar 

  • Putterill J, Laurie R, Macknight R (2004) It’s time to flower: the genetic control of flowering time. Bioessays 26:363–373. doi:10.1002/bies.20021

    Article  PubMed  CAS  Google Scholar 

  • Qin QL, Liu JG, Zhang Z, Peng RH, Xiong AS, Yao QH, Chen JM (2007) Isolation, optimization, and functional analysis of the cDNA encoding transcription factor OsDREB1B in Oryza Sativa L. Mol Breed 19:329–340. doi:10.1007/s11032-006-9065-7

    Article  CAS  Google Scholar 

  • Savitch LV, Allard G, Seki M, Robert LS, Tinker NA, Huner NPA, Shinozaki K, Singh J (2005) The effect of overexpression of two Brassica CBF/DREB1-like transcription factors on photosynthetic capacity and freezing tolerance in Brassica napus. Plant Cell Physiol 46:1525–1539. doi:10.1093/pcp/pci165

    Article  PubMed  CAS  Google Scholar 

  • Shen YG, Zhang WK, He SJ, Zhang JS, Liu Q, Chen SY (2003) An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress. Theor Appl Genet 106:923–930

    PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227. doi:10.1093/jxb/erl164

    Article  PubMed  CAS  Google Scholar 

  • Skinner JS, von Zitzewitz J, Szűcs P, Marquez-Cedillo L, Filichkin T, Amundsen K, Stockinger EJ, Thomashow MF, Chen THH, Hayes PM (2005) Structural, functional, and phylogenetic characterization of a large CBF gene family in barley. Plant Mol Biol 59:533–551. doi:10.1007/s11103-005-2498-2

    Article  PubMed  CAS  Google Scholar 

  • Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94:1035–1040. doi:10.1073/pnas.94.3.1035

    Article  PubMed  CAS  Google Scholar 

  • Taji T, Ohsumi C, Luchi S, Seki M, Kasuga M, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K (2002) Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J 29:417–426. doi:10.1046/j.0960-7412.2001.01227.x

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599. doi:10.1093/molbev/msm092

    Article  PubMed  CAS  Google Scholar 

  • Tang MJ, Lü SY, Jing YX, Zhou XJ, Sun JW, Shen SH (2005) Isolation and identification of a cold-inducible gene encoding a putative DRE-binding transcription factor from Festuca arundinacea. Plant Physiol Biochem 43:233–239. doi:10.1016/j.plaphy.2005.01.015

    Article  PubMed  CAS  Google Scholar 

  • Tian XH, Li XP, Zhou HL, Zhang JS, Gong ZZ, Chen SY (2005) OsDREB4 genes in rice encode AP2-containing proteins that bind specifically to the dehydration-responsive element. J Integr Plant Biol 47:467–476. doi:10.1111/j.1744-7909.2005.00028.x

    Article  CAS  Google Scholar 

  • Wang QY, Guan YC, Wu YR, Chen HL, Chen F, Chu CC (2008) Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Mol Biol 67:589–602. doi:10.1007/s11103-008-9340-6

    Article  PubMed  CAS  Google Scholar 

  • Xiao H, Siddiqua M, Braybrook S, Nassuth A (2006) Three grape CBF/DREB1 genes respond to low temperature, drought and abscisic acid. Plant Cell Environ 29:1410–1421. doi:10.1111/j.1365-3040.2006.01524.x

    Article  PubMed  CAS  Google Scholar 

  • Xiao H, Tattersall EAR, Siddiqua MK, Cramer G, Nassuth A (2008) CBF4 is a unique member of the CBF transcription factor family of Vitis vinifera and Vitis riparia. Plant Cell Environ 31:1–10

    PubMed  CAS  Google Scholar 

  • Xiong YW, Fei SZ (2006) Functional and phylogenetic analysis of a DREB/CBF-like gene in perennial ryegrass (Lolium perenne L.). Planta 224:878–888. doi:10.1007/s00425-006-0273-5

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low temperature, or high-salt stress. Plant Cell 6:251–264

    Article  PubMed  CAS  Google Scholar 

  • Zhao TJ, Sun S, Liu Y, Liu JM, Liu Q, Yan YB, Zhou HM (2006) Regulating the drought-responsive element (DRE)-mediated signaling pathway by synergic functions of trans-active and trans-inactive DRE binding factors in Brassica napus. J Biol Chem 281:10752–10759. doi:10.1074/jbc.M510535200

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr Zhangjun Fei for critical review of this ms and Ms. Julia Sharwood for proofreading. This work was supported by the National High Technology Research and Development Program (‘863’ Program) of China (No. 2006AA100109) and the Program of Ministry of Agriculture (No. 2008-G3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junping Gao.

Additional information

Zheng Tong and Bo Hong have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tong, Z., Hong, B., Yang, Y. et al. Overexpression of two chrysanthemum DgDREB1 group genes causing delayed flowering or dwarfism in Arabidopsis . Plant Mol Biol 71, 115–129 (2009). https://doi.org/10.1007/s11103-009-9513-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-009-9513-y

Keywords

Navigation