Skip to main content
Log in

Molecular Cloning and Characterization of a Vacuolar H+-pyrophos-phatase Gene, SsVP, from the Halophyte Suaeda salsa and its Overexpression Increases Salt and Drought Tolerance of Arabidopsis

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The chenopodiaceae Suaeda salsa L. is a leaf succulent euhalophyte. Shoots of the S. salsa are larger and more succulent when grown in highly saline environments. This increased growth and water uptake has been correlated with a large and specific cellular accumulation of sodium. S. salsa does not have salt glands or salt bladders on its leaves. Thus, this plant must compartmentalize the toxic Na+ in the vacuoles. The ability to compartmentalize sodium may result from a stimulation of the proton pumps that provide the driving force for increased sodium transport into the vacuole. In this work, we isolated the cDNA of the vacuolar membrane proton-translocating inorganic pyrophosphatase (H+-PPase) from S. salsa. The SsVP cDNA contains an uninterrupted open reading frame of 2292 bp, coding for a polypeptide of 764 amino acids. Northern blotting analysis showed that SsVP was induced in salinity treated leaves. The activities of both the V-ATPase and the V-PPase in Arabidopsis overexpressing SsVP-2 is higher markedly than in wild-type plant under 200 mM NaCl and drought stresses. The Overexpression of SsVP can increase salt and drought tolerance of transgenic Arabidopsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

H+-PPase:

H+-pyrophosphatase

H+-ATPase:

H+-adenosine triphosphatase

RWC:

relative water content

References

  • A. Amtmann D. Sanders (1999) ArticleTitleMechanisms of Na+ uptake by plant cells Adv. Bot. Res. 29 75–112 Occurrence Handle1:CAS:528:DyaK1MXmslSjuw%3D%3D

    CAS  Google Scholar 

  • M.P. Apse G.S. Aharon W.A. Snedden E. Blumwald (1999) ArticleTitleSalt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis Science 285 IssueID5431 1256–1258 Occurrence Handle10.1126/science.285.5431.1256 Occurrence Handle1:CAS:528:DyaK1MXls1Sju7s%3D Occurrence Handle10455050

    Article  CAS  PubMed  Google Scholar 

  • E. Ballesteros J.P. Donaire A. Belver (1996) ArticleTitleEffects of salt stress on H+-ATPase and H+-PPase activities of tonoplast-enriched vesicles form sunflower roots Physiol. Plant. 97 259–568 Occurrence Handle10.1034/j.1399-3054.1996.970208.x Occurrence Handle1:CAS:528:DyaK28Xjslyhtr0%3D

    Article  CAS  Google Scholar 

  • B.J. Barkla L. Zingarelli E. Blumwald J.A.C. Smith (1995) ArticleTitleTonoplast Na+/H+ antiport activity and its energization by the vacuolar H+-ATPase in the halophytic plant Mesembryanthemum crystallinum L Plant Physiol. 109 549–556 Occurrence Handle1:CAS:528:DyaK2MXoslOqtrc%3D Occurrence Handle12228611

    CAS  PubMed  Google Scholar 

  • M.L. Binzel R. Ratajczak (2001) Function of membrane transport systems under salinity: tonoplast A. Läuchli U. Lüttge (Eds) Salinity: Environment–Plants–Molecules kluwer Dordrecht

    Google Scholar 

  • A. Blum (1993) The development of stress tolerant cultivars: from science to livelifood T.J. Mabry H.T. Nguyen R.A. Dixon M.S. Bonness (Eds) Biotechnology for Aridland Plants IC2 Institute, University of Texas Austin, TX 1–10

    Google Scholar 

  • P. Chomczynski N. Sacci (1987) ArticleTitleSingle-step method of RNA isolation by acid guanidiumthiocyanate–phenol–chlorofrom extraction Anal. Biochem. 162 156–159 Occurrence Handle10.1016/0003-2697(87)90021-2 Occurrence Handle1:CAS:528:DyaL2sXitFSns7Y%3D Occurrence Handle2440339

    Article  CAS  PubMed  Google Scholar 

  • S.J. Clough A.F. Bent (1998) ArticleTitleFloral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana Plant J. 16 735–743 Occurrence Handle10.1046/j.1365-313x.1998.00343.x Occurrence Handle1:STN:280:DyaK1M7mvVagsQ%3D%3D Occurrence Handle10069079

    Article  CAS  PubMed  Google Scholar 

  • R. Colombo R. Cerana (1993) ArticleTitleEnhanced activity of tonoplast pyrophosphatase in NaCl-grown cells of Daucus carota J. Plant Physiol. 142 226–229 Occurrence Handle1:CAS:528:DyaK3sXms1Kmurg%3D

    CAS  Google Scholar 

  • R. Docampo S.N.J. Moreno (2001) ArticleTitleThe acidocalcisome Mol. Biochem. Parasitol. 33 151–159

    Google Scholar 

  • Y. Drozdowicz J.C. Kissinger P.A. Rea (2000) ArticleTitleAVP2, a sequence-divergent, K(+)-insensitive H(+)-translocating inorganic pyrophosphatase from Arabidopsis Plant Physiol. 123 353–362 Occurrence Handle10.1104/pp.123.1.353 Occurrence Handle1:CAS:528:DC%2BD3cXjsFemsL4%3D Occurrence Handle10806252

    Article  CAS  PubMed  Google Scholar 

  • R.A. Gaxiola J. Li S. Undurraga L.M. Dang G.J. Allen S.L. Alper (2001) ArticleTitleDrought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump Proc. Natl. Acad. Sci. USA 98 11444–11449 Occurrence Handle10.1073/pnas.191389398 Occurrence Handle1:CAS:528:DC%2BD3MXnt1yqurc%3D Occurrence Handle11572991

    Article  CAS  PubMed  Google Scholar 

  • A. Hamada M. Shono T. Xia M. Ohta Y. Hayashi A. Tanaka T. Hayakawa (2001) ArticleTitleIsolation and characterization of a Na+/H+ antiporter gene from the halophyte Atriplex gmelini Plant Mol. Biol. 46 35–42 Occurrence Handle10.1023/A:1010603222673 Occurrence Handle1:CAS:528:DC%2BD3MXltVeksbY%3D Occurrence Handle11437248

    Article  CAS  PubMed  Google Scholar 

  • M. Ikeda S. Satoh M. Maeshima Y. Mukohata C. Moritani (1991) ArticleTitleA vacuolar ATPase and pyrophosphatase in Acetabularia acetabulum Biochim. Biophys. Acta 1070 77–82 Occurrence Handle1:CAS:528:DyaK38XhslGqtw%3D%3D Occurrence Handle1661154

    CAS  PubMed  Google Scholar 

  • E.J. Kim R.G. Zhen P.A. Rea (1994) ArticleTitleHeterologous expression of plant vacuolar pyrophosphatase in yeast demonstrates sufficiency of substrate-binding subunit for transport Proc. Natl. Acad. Sci. USA 91 6128–6132 Occurrence Handle1:CAS:528:DyaK2cXlsFWnsL8%3D Occurrence Handle8016125

    CAS  PubMed  Google Scholar 

  • T. Lin M.F. Morales (1977) ArticleTitleApplication of a one step procedure for measuring inorganic phosphate in the presence of proteins: the actomyosin ATPase-system Anal. Biochem. 77 10–17 Occurrence Handle10.1016/0003-2697(77)90284-6 Occurrence Handle1:STN:280:CSiD1crlvFE%3D Occurrence Handle137680

    Article  CAS  PubMed  Google Scholar 

  • M. Maeshima T. Mimura T. Sato (1994) ArticleTitleDistribution of vacuolar H+-pyrophosphatase and a membrane integral protein in a variety of green plants Plant Cell Physiol. 35 323–328 Occurrence Handle1:CAS:528:DyaK2cXivFCht7k%3D

    CAS  Google Scholar 

  • M. Maeshima S. Yoshida (1989) ArticleTitlePurification and properties of vacuolar membrane proton-translocating inorganic pyrophosphatase from mung bean J. Biol. Chem. 264 20068–20073 Occurrence Handle1:CAS:528:DyaL1MXmt1OksLY%3D Occurrence Handle2555340

    CAS  PubMed  Google Scholar 

  • M.G. Murray W.F. Thomopson (1980) ArticleTitleRapid isolation of high molecular weight plant cDNA Nucleic Acids Res. 8 4321–4325 Occurrence Handle1:CAS:528:DyaL3cXmtVSmtL8%3D Occurrence Handle7433111

    CAS  PubMed  Google Scholar 

  • Y. Nakamura K. Kasamo N. Shimosato M. Sakata E. Ohta (1992) ArticleTitleStimulation of the extrusion of protons and proton ATPase activities with the decline in pyrophosphatase activity of the tonoplast in intact mung bean roots under high sodium chloride stress and its relation to external levels of calcium ions Plant Cell Physiol. 33 139–149 Occurrence Handle1:CAS:528:DyaK38XitFWitbc%3D

    CAS  Google Scholar 

  • Y. Nakanishi M. Maeshima (1998) ArticleTitleMolecular cloning of vacuolar H+-pyrophosphatase and its developmental expression in growing hypocotyl of mung bean Plant Physiol. 116 589–597 Occurrence Handle10.1104/pp.116.2.589 Occurrence Handle1:CAS:528:DyaK1cXht1aju7s%3D Occurrence Handle9489011

    Article  CAS  PubMed  Google Scholar 

  • M.L.O. Otoch A.C.M. Sobreira M.E.F. de-aragao E.G. Orellano M.G.S. Lima D.F. de-Melo (2001) ArticleTitleSalt modulation of vacuolar H+-ATPase and H+-phrophosphatase activities in Vigna unguiculata J. Plant Physiol. 158 545–551 Occurrence Handle1:CAS:528:DC%2BD3MXks1Gisbk%3D

    CAS  Google Scholar 

  • G.E. Parks M.A. Dietrich K.S. Schumaker (2002) ArticleTitleIncreased vacuolar Na+/H+ exchange activity in Salicornia bigelovii Torr. in response to NaCl J. Exp. Bot. 53 IssueID371 1055–1065 Occurrence Handle10.1093/jexbot/53.371.1055 Occurrence Handle1:CAS:528:DC%2BD38XjsFagu7k%3D Occurrence Handle11971917

    Article  CAS  PubMed  Google Scholar 

  • J.R. Pérez-Castiñeira R.L. Lopez_Marques M. Losada A. Serrano (2001) ArticleTitleA thermostable K(+)-stimulated vacuolar-type pyrophosphatase from the hyperthermophilic bacterium Thermotoga maritime FEBS Lett. 496 6–11 Occurrence Handle10.1016/S0014-5793(01)02390-0 Occurrence Handle11343697

    Article  PubMed  Google Scholar 

  • P.A. Rea Y. Kim V. Sarafian R.J. Poole J.M. Davies D. Sanders (1992) ArticleTitleVacuolar H+-translocating pyrophosphatase: a new category of ion translocase Trends Biochem. Sci. 17 348–353 Occurrence Handle10.1016/0968-0004(92)90313-X Occurrence Handle1:CAS:528:DyaK38Xls1Kjs7o%3D Occurrence Handle1329278

    Article  CAS  PubMed  Google Scholar 

  • P.A. Rea R.J. Poole (1993) ArticleTitleVacuolar H+-translocating pyrophosphatase Annu. Rev. Plant Physiol. Plant Mol. Biol. 44 157–180 Occurrence Handle1:CAS:528:DyaK3sXkvV2nu7c%3D

    CAS  Google Scholar 

  • Rhoades, J.D. and Loveday, J. 1990. Salinity in irrigated agriculture. In: B.A. Steward and D.R. Nielsen (Eds.), American Society of Civil Engineers. Irrigation of Agricultural crops (Monograph 30), American Society of Agronomists, pp. 1089–1142.

  • A. Takasu Y. Nakanishi T. Yamauchi M. Maeshima (1997) ArticleTitleAnalysis of the substrate binding site and carboxyl terminal region of vacuolar H+-pyrophosphatase of mung bean with peptide antibodies J. Biochem. 122 883–889 Occurrence Handle1:CAS:528:DyaK2sXnt1ymtbk%3D Occurrence Handle9399596

    CAS  PubMed  Google Scholar 

  • K. Takeshige M. Tazawa A. Hager (1988) ArticleTitleCharacterization of the H+-translocating adenosine triphosphatase and pyrophosphatase of vacuolar membranes isolated by means of a perfusion technique from Chara corallina Plant Physiol. 86 1168–1173 Occurrence Handle1:CAS:528:DyaL1cXktF2ht74%3D

    CAS  Google Scholar 

  • B.S. Wang U Lüttge R. Ratajczak (2001) ArticleTitleEffects of salt treatment and osmotic stress on V-ATPase and V-PPase in leaves of the halophyte Suaeda salsa J. Exp. Bot. 52 IssueID365 2355–2365 Occurrence Handle10.1093/jexbot/52.365.2355 Occurrence Handle1:CAS:528:DC%2BD3MXptVeisL0%3D Occurrence Handle11709585

    Article  CAS  PubMed  Google Scholar 

  • B.S. Wang R. Ratajczak J.H. Zhang (2000) ArticleTitleActivity, amount and subunit composition of vacuolar-type H+-ATPase and H+-PPase in wheat roots under severe NaCl stress J. Plant Physiol. 157 109–116 Occurrence Handle1:CAS:528:DC%2BD3cXmsVKntb8%3D

    CAS  Google Scholar 

  • B.S. Wang K.F. Zhao (1995) ArticleTitleComparison of extractive methods of Na+, K+ in wheat leave Plant Physiol. Commun. 31 50–52

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zhang.

Additional information

Shanli Guo, Haibo Yib: These authors contributed equally to this work

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, S., Yin, H., Zhang, X. et al. Molecular Cloning and Characterization of a Vacuolar H+-pyrophos-phatase Gene, SsVP, from the Halophyte Suaeda salsa and its Overexpression Increases Salt and Drought Tolerance of Arabidopsis. Plant Mol Biol 60, 41–50 (2006). https://doi.org/10.1007/s11103-005-2417-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-005-2417-6

Keywords

Navigation