Skip to main content

Advertisement

Log in

Natural products from marine invertebrates against Leishmania parasites: a comprehensive review

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Parasitic infections by Leishmania parasites remains a severe public health problem, especially in developing countries where it is highly endemic. Chemotherapy still remains a first option for the treatment of those diseases, despite the fact that available drugs exhibit a variety of shortcomings. Thus, innovative, less toxic more affordable and effective antileishmanial agents are urgently needed. The marine environment holds an immeasurable bio- and chemical diversity, being a valuable source of natural products with therapeutic potential. As invertebrates comprise about 60 % of all marine organisms, bioprospecting this class of organisms for antileishmanial properties may unravel unique and selective hit molecules. In this context, this review covers results on the literature of marine invertebrate extracts and pure compounds evaluated against Leishmania parasites mainly by in vitro methods. It comprises results obtained from the phyla Porifera, Cnidaria, Bryozoa (Ectoprota), Mollusca, Echinodermata, Annelida, Cetnophora, Platyhelminthes, sub phyla Crustacea (phylum Arthropoda) and Tunicata (phylum Chordata). Moreover, structure–activity relationships and possible mechanisms of action are mentioned, whenever available information is provided. About 70 species of marine invertebrates belonging to seven different phyla are included in this work. Besides a variety of crude extracts, a total of 140 pure compounds was tested against different Leishmania species. Although the research on the antileishmanial potential of marine invertebrates is in its early beginnings, promising results have been achieved that encourage further research. As more extracts and compounds are being screened, the possibility of finding active and selective antileishmanial molecules increases, rising new hope in the search for new treatments against leishmaniases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

BuOH:

Butanol

CC50 :

Cytotoxic concentration that lysis 50 % of cells

CH2Cl2 :

Dichloromethane

CL:

Cutaneous leishmaniasis

EtOAc:

Ethyl acetate

Hex:

Hexane

IC50 :

Inhibitory concentration that lysis 50 % of Leishmania parasites

MCL:

Mucocutaneous leishmaniasis

MeOH:

Methanol

SI:

Selectivity index

SAR:

Structure-activity relationship

VL:

Visceral leishmaniasis

References

  • Achan J, Talisuna AO, Erhart A et al (2011) Quinine, an old anti-malarial drug in a modern world: role in the treatment of malaria. Malaria J 10:144–155

    Article  CAS  Google Scholar 

  • Almeida MTR, Tonini ML, Guimarães TR et al (2012) Anti-infective pregnane steroid from the octocoral Carijoa riisei collected in South Brazil. Lat Am J Pharm 31(10):1489–1495

    Google Scholar 

  • Alvar J, Velez ID, Bern C et al (2012) Leishmaniasis worldwide and global estimates of its incidence. PLoS ONE 7(5):e35671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alves RRN, Oliveira TPR, Rosa IL et al (2013) Marine invertebrates in traditional medicines. In: Alves RRN, Rosa IL (eds) Animals in traditional folk medicine. Springer-Verlag, Berlin, Heidelberg

    Chapter  Google Scholar 

  • Atmaca H, Bozkurt E (2015) Trabectedin (ET-743) from marine tunicate for cancer treatment. In: Kim S-K (ed) Handbook of Anti-cancer drugs from marine origin. Springer, Cham

    Google Scholar 

  • Bazin MA, Loiseau PM, Bories C et al (2006) Synthesis of oxysterols and nitrogenous sterols with antileishmanial and trypanocidal activities. Eur J Med Chem 41(10):1109–1116

    Article  CAS  PubMed  Google Scholar 

  • Bergmann W, Feeneyz RJ (1951) Contributions to the study of marine products. XXXII. The nucleosides of sponges.I. J Org Chem 16(6):981–987

    Article  CAS  Google Scholar 

  • Bharate SB, Yadav RR, Khan SI et al (2013) Meridianin G and its analogs as antimalarial agents. Med Chem Comm. 4:1042–1048

    Article  CAS  Google Scholar 

  • Bianco EM, de Oliveira SQ, Rigotto C et al (2013) Anti-infective potential of marine invertebrates and seaweeds from the Brazilian coast. Molecules 18(5):5761–5778

    Article  CAS  PubMed  Google Scholar 

  • Blunt JW, Copp BR, Keyzers RA et al (2013) Marine natural products. Nat Prod Rep 32(2):116–211

    Article  Google Scholar 

  • Blunt JWJW, Copp BR, Keyzers RA et al (2014) Marine natural products. Nat Prod Rep 31(2):160–258

    Article  CAS  PubMed  Google Scholar 

  • Brusca RC, Brusca GJ (2003) Invertebrates. Sinauer Associates, Sunderland

    Google Scholar 

  • Callahan HL, Portal AC, Devereaux R et al (1997) An axenic amastigote system for drug screening. Antimicrob Agents Chemother 41(4):818–822

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carballeira NM, Montano N, Cintrón GA et al (2011) First total synthesis and antileishmanial activity of (Z)-16-methyl-11-heptadecenoic acid, a new marine fatty acid from the sponge Dragmaxia undata. Chem Phys Lipids 164(2):113–117

    Article  CAS  PubMed  Google Scholar 

  • Carballeira NM, Cartagena M, Li F et al (2012) First total synthesis of the (±)-2-methoxy-6-heptadecynoic acid and related 2-methoxylated analogs as effective inhibitors of the leishmania topoisomerase IB enzyme. Pure Appl Chem 84(9):1867–1875

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carballeira NM, Montano N, Alvarez-Velilla R et al (2013) Synthesis of marine α-methoxylated fatty acid analogs that effectively inhibit the topoisomerase IB from Leishmania donovani with a mechanism different from that of camptothecin. Mar Drugs 11(10):3661–3675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark KE, Capper A, Togna GD et al (2013) Ecology- and bioassay-guided drug discovery for treatments of tropical parasitic disease: 5α,8α-Epidioxycholest-6-en-3β-ol isolated from the mollusk Dolabrifera dolabrifera shows significant activity against Leishmania donovani. Nat Prod Commun 8(11):1537–1540

    CAS  PubMed  Google Scholar 

  • Compagnone RS, Pifia IC, Rangel HR et al (1998) Antileishmanial cyclic peroxides from the Palauan sponge Plakortis aff. angulospiculatus. Tetrahedron 54:3057–3068

    Article  CAS  Google Scholar 

  • Croft SL, Olliaro P (2011) Leishmaniasis chemotherapy-challenges and opportunities. Clin Microbiol Infect 17:1478–1483

    Article  CAS  PubMed  Google Scholar 

  • De Assis RR, Ibraim IC, Nogueira PM et al (2012) Glycoconjugates in New World species of Leishmania: polymorphisms in lipophosphoglycan and glycoinositolphospholipids and interaction with hosts. Biochim Biophys Acta 1820:1354–1365

    Article  PubMed  Google Scholar 

  • Desjeux P (2004) Leishmaniasis: current situation and new perspectives. Comp Immunol Microbiol Infect Dis 27(5):305–318

    Article  CAS  PubMed  Google Scholar 

  • Donia MS, Wang B, Dunbar DC et al (2008) Mollamides B and C, Cyclic hexapeptides from the Indonesian tunicate Didemnum molle. J Nat Prod 71(6):941–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dube A, Singh N, Saxena A et al (2007) Antileishmanial potential of a marine sponge, Haliclona exigua (Kirkpatrick) against experimental visceral leishmaniasis. Parasitol Res 101(2):317–324

    Article  PubMed  Google Scholar 

  • Faulkner DJ (2001) Marine natural products. Nat Prod Rep 18(1):1–49

    Article  CAS  PubMed  Google Scholar 

  • Festa C, De Marino S, D’Auria MV et al (2012) Gracilioethers E-J, new oxygenated polyketides from the marine sponge Plakinastrella mamillaris. Tetrahedron 68:10157–10163

    Article  CAS  Google Scholar 

  • Finlayson R, Pearce AN, Page MJ et al (2011) Didemnidines A and B, indole spermidine alkaloids from the New Zealand ascidian Didemnum sp. J Nat Prod 74:888–892

    Article  CAS  PubMed  Google Scholar 

  • Galeano E, Thomas OP, Robledo S et al (2011) Antiparasitic bromotyrosine derivatives from the marine sponge Verongula rigida. Mar Drugs 9(10):1902–1913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garson MJ (2010) Marine natural products as antifeedants. In: Mander L, Liu H-W (eds) Comprehensive natural products II chemistry and biology. Elsevier, Oxford

    Google Scholar 

  • Gomes AR, Freitas AC, Rocha-Santos TAP et al (2014) Bioactive compounds derived from echinoderms. RSC Adv. doi:10.1039/C4RA03352C

    Google Scholar 

  • Gray CA, de Lira SP, Silva M et al (2006) Sulfated meroterpenoids from the Brazilian sponge Callyspongia sp. are inhibitors of the antileishmaniasis target adenosine phosphoribosyl transferase. J Org Chem 71(23):8685–8690

    Article  CAS  PubMed  Google Scholar 

  • Haefner B (2003) Drugs from the deep: marine natural products as drug candidates. Drug Discov Today 8(12):536–544

    Article  CAS  PubMed  Google Scholar 

  • Hua H-M, Peng J, Dunbar DC et al (2007) Batzelladine alkaloids from the caribbean sponge Monanchora unguifera and the significant activities against HIV-1 and AIDS opportunistic infectious pathogens. Tetrahedron 63(45):11179–11188

    Article  CAS  Google Scholar 

  • Ishigami ST, Goto Y, Inoue N et al (2012) Cristaxenicin A, an antiprotozoal xenicane diterpenoid from the deep sea gorgonian Acanthoprimnoa cristata. J Org Chem 77(23):10962–10966

    Article  CAS  PubMed  Google Scholar 

  • Kahla-Nakbi AB, Haouas N, El Ouaer A et al (2010) Screening of antileishmanial activity from marine sponge extracts collected off the Tunisian coast. Parasitol Res 106(6):1281–1286

    Article  PubMed  Google Scholar 

  • Kossuga MH, de Lira SP, Nascimento AM et al (2007) Isolation and biological activities of secondary metabolites from the sponges Monanchora aff. arbuscula, Aplysina sp., Petromica ciocalyptoides and Topsentia ophiraphidies, from the ascidian Didemnum ligulum and from the octocoral Carijoa riisei. Quim Nova 30(5):1194–1202

    Article  CAS  Google Scholar 

  • Kossuga MH, Nascimento AM, Reimão JQ et al (2008) Antiparasitic, antineuroinflammatory, and cytotoxic polyketides from the marine sponge Plakortis angulospiculatus collected in Brazil. J Nat Prod 71(3):334–339

    Article  CAS  PubMed  Google Scholar 

  • Laniado-Laborín R, Cabrales-Vargas MN (2009) Amphotericin B: side effects and toxicity. Rev Iberoam Micol 26(4):223–227

    Article  PubMed  Google Scholar 

  • Laport MS, Santos OCS, Muricy G (2009) Marine sponges: potential sources of new antimicrobial drugs. Curr Pharm Biotechnol 10(1):86–105

    Article  CAS  PubMed  Google Scholar 

  • Lawrence AJ, Afifi R, Ahmed M et al (2009) Bioactivity as an options value of sea cucumbers in the Egyptian red sea. Conserv Biol 24(1):217–225

    Article  PubMed  Google Scholar 

  • Le Pape P, Zidane M, Abdala H et al (2000) A glycoprotein isolated from the sponge, Pachymatisma johnstonii, has anti-leishmanial activity. Cell Biol Int 24(1):51–56

    Article  PubMed  Google Scholar 

  • Leal MC, Puga J, Serôdio J et al (2012) Trends in the discovery of new marine natural products from invertebrates over the last two decades—where and what are we bioprospecting? PLoS ONE 7(1):e30580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim CW, Kim Y-K, Youn HD et al (2006) Enantiomeric compounds with antileishmanial activities from a sponge, Plakortis sp. Agric Chem Biotechnol 49(1):21–23

    CAS  Google Scholar 

  • Ma WS, Mutka T, Vesley B et al (2009) Norselic acids A-E, highly oxidized anti-infective steroids that deter mesograzer predation, from the Antarctic sponge Crella sp. J Nat Prod 72(10):1842–1846

    Article  CAS  PubMed  Google Scholar 

  • Marchán E, Arrieche D, Henríquez W et al (2000) Efecto in vitro de una sustancia alcaloidea aislada de Amphimedon viridis (Porifera) sobre promastigotes de Leishmania mexicana. Ver Biol Trop 48(1):31–38

    Google Scholar 

  • Márquez D, Robledo S, Martínez A (2007) Antileishmanial epidioxysterols from extracted sterols of the Colombian marine sponge Ircinia campana. In: Custodio MR, Lôbo-Hajdu G, Hajdu E, Muricy G (eds) Porifera research: biodiversity, innovation and sustainability. Série Livros 28. Museu Nacional, Rio de Janeiro, pp 433–437

    Google Scholar 

  • Martínez A, Robledo SM, Muñoz DL et al (2001) Antiparasitic activity of methanol extracts and isolated fractions from caribbean sponges. Vitae 8(1–2):71–81

    Google Scholar 

  • Martins A, Vieira H, Gaspar H, Santos S (2014) Marketed marine natural products in the pharmaceutical and cosmeceutical industries: tips for success. Mar Drugs 12(2):1066–1101

    Article  PubMed  PubMed Central  Google Scholar 

  • Mayer AM, Rodríguez AD, Berlinck RG et al (2011) Marine pharmacology in 2007–8: mMarine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous system, and other miscellaneous mechanisms of action. Comp Biochem Physiol C: Toxicol Pharmacol 153(2):191–222

    Google Scholar 

  • Mayer AM, Rodríguez AD, Taglialatela-Scafati O et al (2013) Marine pharmacology in 2009–2011: marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar Drugs 11(7):2510–2573

    Article  PubMed  PubMed Central  Google Scholar 

  • Menezes CBA, Bonugli-Santo RC, Miquelettoa PB et al (2010) Microbial diversity associated with algae, ascidians and sponges from the north coast of São Paulo state, Brazil. Microbiol Res 165(6):466–482

    Article  PubMed  Google Scholar 

  • Mishra BB, Singh RK, Srivastava A et al (2009) Fighting against leishmaniasis: search of alkaloids as future true potential anti-leishmanial agents. Mini Rev Med Chem 9(1):107–123

    Article  CAS  PubMed  Google Scholar 

  • Mohammed R, Peng J, Kelly M et al (2006) Cyclic heptapeptides from the Jamaican sponge Stylissa caribica. J Nat Prod 69:1739–1744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray HW, Berman JD, Davies CR et al (2005) Advances in leishmaniasis. Lancet 366(9496):1561–1577

    Article  CAS  PubMed  Google Scholar 

  • Nakao Y, Shiroiwa T, Murayama S et al (2004) Identification of renieramycin A as an antileishmanial substance in a marine sponge Neopetrosia sp. Mar Drugs 2(2):55–62

    Article  CAS  PubMed Central  Google Scholar 

  • Nakao Y, Kawatsu S, Okamoto C et al (2008) Ciliatamides A-C, bioactive lipopeptides from the deep-sea Sponge Aaptos ciliata. J Nat Prod 71(3):469–472

    Article  CAS  PubMed  Google Scholar 

  • Orhan I, Şener B, Kaiser M et al (2010) Inhibitory activity of marine sponge-derived natural products against parasitic protozoa. Mar Drugs 8(1):47–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paris C, Loiseau PM, Bories C et al (2004) Miltefosine induces apoptosis-like death in Leishmania donovani promastigotes. Antimicrob Agents Chemother 48(3):852–859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parra MG, Fidalgo LM, Martinez JM et al (2010) Leishmanicidal activity of Echinaster (Othilia) echinophorus crude extract. Rev Inst Med Trop Sao Paulo 52(2):89–93

    PubMed  Google Scholar 

  • Perry A (2000) Global survey of marine medicinals. In: Moreau M-A, Hall HJ, Vincent ACJ (eds) Proceedings of the first international workshop on the management and culture of marine species used in traditional medicines. Project Seahorse, Montreal, p 2000

    Google Scholar 

  • Ramos H, Validivieso E, Gamargo M et al (1996) Amphotericin B kills unicellular leishmanias by forming aqueous pores permeable to small cations and anions. J Med Bio 152:65–75

    CAS  Google Scholar 

  • Rao KV, Kasanah N, Wahyuono S et al (2004) Three new manzamine alkaloids from a common Indonesian sponge and their activity against infectious and tropical parasitic diseases. J Nat Prod 67:1314–1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao KV, Donia MS, Peng J et al (2006) Manzamine B and E and ircinal A related alkaloids from an Indonesian Acanthostrongylophora sponge and their activity against infectious, tropical parasitic, and Alzheimer’s diseases. J Nat Prod 69:1034–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Regalado EL, Tasdemir D, Kaiser M et al (2010) Antiprotozoal steroidal saponins from the marine sponge Pandaros acanthifolium. J Nat Prod 73(8):1404–1410

    Article  CAS  PubMed  Google Scholar 

  • Reimão JQ, Migotto AE, Kossuga MH et al (2008) Antiprotozoan activity of Brazilian marine cnidarian extracts and of a modified steroid from the octocoral Carijoa riisei. Parasitol Res 103:1445–1450

    Article  PubMed  Google Scholar 

  • Rinaudo M (2006) Chitin and chitosan: properties and applications. Progr Polym Sci 31(7):603–632

    Article  CAS  Google Scholar 

  • Rocha LG, Almeida JR, Macêdo RO et al (2005) A review of natural products with antileishmanial activity. Phytomedicine 12(6–7):514–535

    Article  CAS  PubMed  Google Scholar 

  • Rocha J, Peixe L, Gomes NCM et al (2011) Cnidarians as a source of new marine bioactive compounds—an overview of the last decade and future steps for bioprospecting. Mar Drugs 9(10):1860–1886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues JCF, Seabra SH, Souza W (2006) Apoptosis-like death in parasitic protozoa. Braz J Morphol Sci 23(1):87–98

    Google Scholar 

  • Ruiz-Fons F, Ferroglio E, Gortázar C (2013) Leishmania infantum in free-ranging hares, Spain, 2004–2010. Euro Surveillance 18:30

    Google Scholar 

  • Salah-Tazdaït R, Tazdaït D, Harrat Z et al (2014) Antileishmanial activity of low molecular weight chitin prepared from shrimp shell waste. Paper presented at the The III International Conference on Antimicrobial Research, Madrid, 1–3 Oct 2014

  • Santos MFC, Harper PM, Williams DE et al (2015) Anti-parasitic guanidine and pyrimidine alkaloids from the marine sponge Monanchora arbusculaarbuscular. J Nat Prod 78(5):1101–1112

    Article  CAS  PubMed  Google Scholar 

  • Scala F, Fattorusso E, Menna ML et al (2010) Bromopyrrole alkaloids as lead compounds against protozoan parasites. Mar Drugs 8(7):2162–2174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt EW, Donia MS, McIntosh JA et al (2012) Origin and variation of tunicate secondary metabolites. J Nat Prod 75(2):295–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharp JH, Winson MK, Porter JS (2007) Bryozoan metabolites: an ecological perspective. Nat Prod Rep 24(4):659–673

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Kumar D, Ramesh V et al (2006) Visceral leishmaniases, or kala azar (KA): high incidence of refractoriness to antimony is contributed by anthroponotic transmission via post-KA dermal Leishmaniases. J Inf Dis 194:302–306

    Article  CAS  Google Scholar 

  • Singh N, Kumar R, Gupta S et al (2008) Antileishmanial activity in vitro and in vivo of constituents of sea cucumber Actinopyga lecanora. Parasitol Res 103:351–354

    Article  PubMed  Google Scholar 

  • Singh N, Kumar M, Singh RK (2012) Leishmaniasis: current status of available drugs and new potential drug targets. Asian Pac J Trop Med 5(6):485–497

    Article  CAS  PubMed  Google Scholar 

  • Slack RD, Jacobine AM, Posner GH (2012) Antimalarial peroxides: advances in drug discovery and design. Med Chem Commun 3:281–297

    Article  CAS  Google Scholar 

  • TDR (2007) Lead discovery for drugs. Business Plan 2008–2013. BL 3

  • Tempone AG, Martins de Oliveira C, Berlinck RG (2011) Current approaches to discover marine antileishmanial natural products. Planta Med 77(6):572–585

    Article  CAS  PubMed  Google Scholar 

  • Thao NP, Luyen BTT, Brun R et al (2015) Anti-protozoal activities of cembrane-type diterpenes from Vietnamese soft corals. Molecules 20:12459–12468

    Article  PubMed  Google Scholar 

  • Thompson MN, Gallimore W (2013) Antileishmanial, antimalarial and antimicrobial activity of the Jamaican ‘Touch-me-not’ sponge Neofibularia nolitangera. J App Pharm Sci 3(8):80–83

    Google Scholar 

  • Torres FAE, Passalacqua TG, Velásquez AMA et al (2014) New drugs with antiprotozoal activity from marine algae: a review. Rev Bras Farmacogn 24(3):265–276

    Article  CAS  Google Scholar 

  • Ueoka R, Nakao Y, Kawatsu S et al (2009) Gracilioethers A-C, antimalarial metabolites from the marine sponge Agelas gracilis. J Org Chem 74(11):4203–4207

    Article  CAS  PubMed  Google Scholar 

  • Vik A, Proszenyák A, Vermeersch M et al (2009) Screening of agelasine D and analogs for inhibitory activity against pathogenic protozoa; identification of hits for visceral Leishmaniasis and Chagas disease. Molecules 14(1):279–288

    Article  CAS  PubMed  Google Scholar 

  • Von Salm JL, Wilson NG, Vesely BA et al (2014) Shagenes A and B, new tricyclic sesquiterpenes produced by an undescribed Antarctic octocoral. Org Lett 16(10):2630–2633

    Article  Google Scholar 

  • Voultsiadou E (2010) Therapeutic properties and uses of marine invertebrates in the ancient Greek world and early Byzantium. J Ethnopharmacol 130(2):237–247

    Article  PubMed  Google Scholar 

  • Weathers PJ, Arsenault PR, Covello PS et al (2011) Artemisinin production in Artemisia annua: studies in planta and results of a novel delivery method for treating malaria and other neglected diseases. Phytochem Rev 10(2):173–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • WHO (2010) Control of the leishmaniasis: report of a meeting of the WHO Expert Committee on the Control of Leishmaniases. WHO Technical Report Series, 949

  • Yang F, Hamann MT, Zou Y et al (2012) Antimicrobial metabolites from the Paracel Islands Sponge Agelas mauritiana. J Nat Prod 75(4):774–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zidane M, Pondaven P, Roussakis C et al (1996) Effects in vitro of pachymatismin, a glycoprotein from the marine sponge Pachymatisma johnstonii, on a non-small-cell bronchopulmonary carcinoma line (NSCLC-N6). Anticancer Res 16(5A):2805–2812

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the XtremeBio project (PTDC/MAR-EST/4346/2012) funded by Foundation for Science and Technology (FCT) and the Portuguese National Budget. This work also received national funds through FCT project CCMAR/Multi/04326/2013. Luísa Custódio was supported by the FCT Investigator Programme (IF/00049/2012). Katkam N. Gangadhar is a post-doctoral researcher funded by the FCT (SFRH/BPD/81882/2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luísa Custódio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, M., Barreira, L., Gangadhar, K.N. et al. Natural products from marine invertebrates against Leishmania parasites: a comprehensive review. Phytochem Rev 15, 663–697 (2016). https://doi.org/10.1007/s11101-016-9455-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-016-9455-3

Keywords

Navigation