Skip to main content

Advertisement

Log in

The genus Casearia: a phytochemical and pharmacological overview

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Casearia (Salicaceae sensu lato) species have been used as folk medicines in South American and Asian countries since ancient times. Previous phytochemical screenings demonstrated that the Casearia plants mainly contain clerodane diterpenoids, sesquiterpenoids, phenylpropanoids and other constituents from different chemical classes. The pharmacological studies confirmed that the crude extracts or individual compounds from the genus showed cytotoxic, hypoglycemic, antiulcer, and anti-inflammatory activities, as well as anti-snake venom property. In this review we presented a summary of the secondary metabolites isolated from Casearia species based on the published literatures through May 2013. In addition to the traditional medicinal use of Casearia plants and their taxonomic characteristics, we focused on the known biological activities of the plants and discussed them in detail here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

A375:

Skin malignant cell line

A549:

Human lung tumor cell line

ABTS:

2,2′-Azino-di-3′-ethylbenzthiazoline sulfonate

Ach:

Acetylcholine

AchE:

Acetylcholinesterase

APG:

The angiosperm phylogeny group

ATPase:

Adenosine triphosphatase

BC1:

Human breast cancer cell line

CD50 :

The concentration of the substance inhibiting cell growth by 50 %

DLD-1:

Human colon cancer cell line

DNA:

Deoxyribonucleic acid

DU-145:

Prostate cancer cell line

ED50 :

The median effective dose

EMS:

Ethyl methanesulfonate

GSH:

Reduced glutathione

H460:

Lung cancer cell line

HCT-8:

Human colon tumor cell line

HDL:

High density lipoprotein

HeLa:

Human cervical carcinoma cell line

Hep59T/VGH:

Human liver carcinoma cell line

HepG2:

Hepatocyte carcinoma cell line

HL-60:

Human leukemia cell line

3-HMX:

3-Hydroxymethyl xylitol

HS27:

Human normal foreskin cell line

HT29:

Colon tumor cell line

HTC:

Hepatoma tissue culture

IC50 :

The half maximal inhibitory concentration

ICAM-1:

Intercellular adhesion molecule 1

IFN:

Interferon

IGDE:

Isobutyl gallate-3,5-dimethyl ether

J774:

Murine macrophages

KB:

Human oral epidermoid carcinoma cell line

L-6:

Rat myoblast-derived cells

LC50 :

The median lethal dose

LD50 :

Median lethal dose

LDL:

Low density lipoprotein

LDL-C:

Low-density lipoprotein-cholesterol

LFA-1:

Leukocyte function antigen 1

LPS:

Lipopolysaccharide

MCF-7:

Human breast cancer cell line

MDA-MB-231:

Breast tumor cell line

MDA-MB-435:

Human melanoma

ME:

Methanol extract

Med:

Human medulla cancer cell line

MeOH:

Methyl alcohol

MGDE:

Methyl gallate-3,5-dimethyl ether

MIC:

Minimum inhibition concentration

MRC-5:

Human diploid embryonic lung cells

NCI-ADR/RES:

Human ovarian-resistant cell line

NCI-H187:

Human lung cancer cell line

NCI-H460:

Human lung cancer cell line

NK:

Natural killer (cells)

NTPDase:

Ecto-nucleoside triphosphate diphosphohydrolases

OVCAR-3:

Human ovarian cancer cell line

P388:

Mouse lymphocytic leukemia cell line

PC12 cell line:

A cell line derived from a pheochromocytoma of the rat adrenal medulla

PC3:

Human prostate cancer cell line

PDE I:

Phosphodiesterase I

PLA2 :

Phospholipase A2

PND:

Phrenic nerve-diaphragm

SAR:

Structure–activity relationship

STZ:

Streptozotocin

TBARS:

Hiobarbituric acid reactive substances

TG:

Triglyceride

TGI:

Total growth inhibition

TRAIL:

Tumor necrosis factor-R-related apoptosis-inducing ligand

TSP:

Total suspended particulate

U251:

Human glioma cell line

UACC-62:

Human melanoma

VLDL:

Very low density lipoprotein

VLDL-C:

Very low density lipoprotein-cholesterol

V-79:

Chinese hamster V-79 cells

References

  • Alves TMA (2000) Biological screening of Brazilian medicinal plants. Mem Inst Oswaldo Cruz 95:367–373

    CAS  PubMed  Google Scholar 

  • Ambastha SP (1986) The useful plants of India publication and information directorate. CSIR, New Delhi, p 109

    Google Scholar 

  • Asolkar LV, Lakkav KK, Chakre OJ (1992) Glossory of Indian medicinal plant with active principles, part I (A–K). Publication and Information Directorate, New Delhi, p 176

    Google Scholar 

  • Awasthy KS, Chaurasia OP, Sinha SP, Khan PK (2000) Differential genotoxicity of the crude leaf extract of a medicinal plant, Casearia tomentosa. Biomed Environ Sci 13(1):12–18

    CAS  PubMed  Google Scholar 

  • Basile AC, Sertie JA, Panizza S, Oshiro TT, Azzolini CA (1990) Pharmacological assay of Casearia sylvestris. I: preventive anti-ulcer activity and toxicity of the leaf crude extract. J Ethnopharmacol 30(2):185–197

    CAS  PubMed  Google Scholar 

  • Bentham G (1861) Caseariae. J Linn Soc Bot 5(Suppl 2):87

    Google Scholar 

  • Beutler JA, McCall KL, Herbert K, Herald DL, Pettit GR, Johnson T, Shoemaker RH, Boyd MR (2000) Novel cytotoxic diterpenes from Casearia arborea. J Nat Prod 63(5):657–661

    Google Scholar 

  • Boeckler GA, Gershenzon J, Unsicker SB (2011) Phenolic glycosides of the Salicaceae and their role as anti-herbivore defenses. Phytochemistry 72:1497–1509

    CAS  PubMed  Google Scholar 

  • Borges MH, Soares AM, Rodrigues VM, Andriao-Escarso SH, Diniz H, Hamaguchi A, Quintero A, Lizano S, Gutierrez JM, Giglio JR, Homsi-Brandeburgo MI (2000) Effects of aqueous extract of Casearia sylvestris (Flacourtiaceae) on actions of snake and bee venoms and on activity of phospholipases A2. Comp Biochem Phys B 127(1):21–30

    CAS  Google Scholar 

  • Borges MH, Soares AM, Rodrigues VM, Oliveira F, Fransheschi AM, Rucavado A, Giglio JR, Homsi-Brandeburgo MI (2001) Neutralization of proteases from Bothrops snake venoms by the aqueous extract from Casearia sylvestris (Flacourtiaceae). Toxicon 39(12):1863–1869

    CAS  PubMed  Google Scholar 

  • Carvalho PRF, Furlan M, Young MCM, Kingston DGI, Bolzani VS (1998) Acetylated DNA-damaging clerodane diterpenes from Casearia sylvestris. Phytochemistry 49(6):1659–1662

    PubMed  Google Scholar 

  • Cavalcante WLG, Campos TO, Pai-Silva MD, Pereira PS, Oliveira CZ, Soares AM, Gallacci M (2007) Neutralization of snake venom phospholipase A2 toxins by aqueous extract of Casearia sylvestris (Flacourtiaceae) in mouse neuromuscular preparation. J Ethnopharmacol 112(3):490–497

    CAS  PubMed  Google Scholar 

  • Chai XY, Lu YN, Ren HY, Tu PF (2006) Advance in studies on chemical constituents and bioactivities of plants from Flacourtiaceae. Chin J Chin Mater Med 31(4):269–279

    CAS  Google Scholar 

  • Chai XY, Li FF, Bai CC, Xu ZR, Shi HM, Tu PF (2010) Three new acylated glycosides from the stems of Casearia velutina and their protective effect against H2O2-induced impairment in PC12 cells. Planta Med 76(1):91–93

    CAS  PubMed  Google Scholar 

  • Chandramohan G, Ignacimuthu S, Pugalendi KV (2007) Preparation of novel compound, 3-hydroxymethyl xylitol, with antidiabetic activity, from Casearia esculenta root. Indian Pat Appl, IN 2007CH00268 A 20070223

  • Chandramohan G, Ignacimuthu S, Pugalendi KV (2008) A novel compound from Casearia esculenta (Roxb.) root and its effect on carbohydrate metabolism in streptozotocin-diabetic rats. Eur J Pharmacol 590(1–3):437–443

    CAS  PubMed  Google Scholar 

  • Chandramohan G, Al-Numair KS, Pugalendi KV (2009) Restoration of altered plasma, erythrocyte and liver antioxidant levels by 3-hydroxymethyl xylitol in streptozotocin-diabetic rats. Int J Integr Biol 5(3):176–181

    CAS  Google Scholar 

  • Chandramohan G, Al-Numair KS, Sridevi M, Pugalendi KV (2010) Antihyperlipidemic activity of 3-hydroxymethyl xylitol, a novel antidiabetic compound isolated from Casearia esculenta (Roxb.) root, in streptozotocin-diabetic rats. J Biochem Mol Toxicol 24(2):95–101

    CAS  PubMed  Google Scholar 

  • Chang KC, Duh CY, Chen IS, Tsai IL (2003) A cytotoxic butenolide, two new dolabellane diterpenoids, a chroman and a benzoquinol derivative from Formosan Casearia membranacea. Planta Med 69(7):667–672

    CAS  PubMed  Google Scholar 

  • Chase MW, Zmartzty S, Lledó MD, Wurdack KJ, Swensen SM, Fay MF (2002) When in doubt, put it in Flacourtiaceae: a molecular phylogenetic analysis based on plastid rbcL DNA sequences. Kew Bull 57:141–181

    Google Scholar 

  • Chen TB, Wiemer DF (1991) Corymbotins A–I: highly oxidized kolovane derivatives from Casearia corymbosa. J Nat Prod 54(6):1612–1618

    CAS  Google Scholar 

  • Chen CY, Cheng YB, Chen SY, Chien CT, Kuo YH, Guh JH, Khalil AT, Shen YC (2008) New bioactive clerodane diterpenoids from the roots of Casearia membranacea. Chem Biodivers 5(1):162–167

    CAS  PubMed  Google Scholar 

  • Chen B, Wild D, Guha R (2009) PubChem as a source of polypharmacology. J Chem Inf Model 49:2044–2055

    CAS  PubMed  Google Scholar 

  • Choudhury KD, Basu NK (1967) Phytochemical and hypoglycemic investigation of Casearia esculenta. J Pharm Sci 56(11):1405–1409

    CAS  PubMed  Google Scholar 

  • Cintra-Francischinelli M, Silva MG, Andreo-Filho N, Gerenutti M, Cintra ACO, Giglio JR, Leite GB, Cruz-Hofling MA, Rodrigues-Simioni L, Oshima-Franco Y (2008) Antibothropic action of Casearia sylvestris Sw. (Flacourtiaceae) extracts. Phytother Res 22(6):784–790

    CAS  PubMed  Google Scholar 

  • Coimbra R (1958) Notas de Fitoterapia. Laboratório Clínico Araujo. Rio de Janeiro, pp 169–170

  • Cruz GL (1995) Dicionario das Plantas Uteis do Brasil, 5th edn. Bertrand, Rio de Janeiro, pp 599–600

    Google Scholar 

  • Diaz MAN, Rossi CC, Ribon AOB, Silva DM, Aguilar AP, Munoz GD (2009) Chemical composition and biological activity of some essential oils from traditional medicinal plants against clinical isolates of Staphylococcus aureus from bovine mastitis. Int J Essent Oil Ther 3(2–3):119–124

    CAS  Google Scholar 

  • Dymock W, Warden CJH, Hooper D (1891) Pharmacographia Indica, vol II. Trubner and Co., London, p 51

  • Espindola LS, Vasconcelos Junior JR, Mesquita ML, Marquie P, Paula JE, Mambu L, Santana JM (2004) Trypanocidal activity of a new diterpene from Casearia sylvestris var. lingua. Planta Med 70(11):1093–1095

    CAS  PubMed  Google Scholar 

  • Esteves I, Souza IR, Rodrigues M, Cardoso LGV, Santos LS, Sertie JAA, Perazzo FF, Lima LM, Schneedorf JM, Bastos JK, Carvalho JCT (2005) Gastric antiulcer and anti-inflammatory activities of the essential oil from Casearia sylvestris Sw. J Ethnopharmacol 101(1–3):191–196

    CAS  PubMed  Google Scholar 

  • Ferreira PMP, Santos AG, Tininis AG, Costa PM, Cavalheiro AJ, Bolzani VS, Moraes MO, Costa-Lotufo LV, Montenegro RC, Pessoa C (2010) Casearin X exhibits cytotoxic effects in leukemia cells triggered by apoptosis. Chem Biol Interact 188(3):497–504

    CAS  PubMed  Google Scholar 

  • Ferreira PMP, Costa-Lotufo LV, Moraes MO, Barros FWA, Martins AMA, Cavalheiro AJ, Bolzani VS, Santos AG, Pessoa C (2011) Folk uses and pharmacological properties of Casearia sylvestris: a medicinal review. An Acad Bras Cienc 83(4):1373–1384

    CAS  PubMed  Google Scholar 

  • Flausino OJ, Abissi BM, Vieira-Junior GM, Santos AG, Silva DH, Cavalheiro A, Bolzani VS (2009) Protease inhibition activity of extracts from Salicaceae species from Brazilian Cerrado and Atlantic Rain Forest and of an enriched fraction of clerodane diterpenes (casearins). Rev Bras Farmacogn 19(3):755–758

    CAS  Google Scholar 

  • Flora of China Editorial Committee (2007) Flora of China, vol 13. Science Press, Beijing, p 133 (http://www.efloras.org/florataxon.aspx?flora_id=2&taxon_id=105791)

  • Gertsch J (2011) Botanical drugs, synergy, and network pharmacology: forth and back to intelligent mixtures. Planta Med 77:1086–1098

    CAS  PubMed  Google Scholar 

  • Gertsch J, Leonti M, Raduner S, Racz I, Chen JZ, Xie XQ, Altmann KH, Karsak M, Zimmer A (2009) Beta-caryophyllene is a dietary cannabinoid. Proc Natl Acad Sci USA 105:9099–9104

    Google Scholar 

  • Gibbons S, Gray AI, Waterman PG (1996) Clerodane diterpenes from the bark of Casearia tremula. Phytochemistry 41(2):565–570

    CAS  Google Scholar 

  • Gilg E (1925) Flacourtiaceae. In: Engler A, Prantl A (eds) Die Natürlichen Pflanzenfamilien, vol 21. 2nd edn. pp 377–457

  • Govindasamy C, Al-Numair KS, Alsaif MA, Viswanathan KP (2011) Influence of 3-hydroxymethyl xylitol, a novel antidiabetic compound isolated from Casearia esculenta (Roxb.) root, on glycoprotein components in streptozotocin-diabetic rats. J Asian Nat Prod Res 13(8):700–706

    CAS  PubMed  Google Scholar 

  • Guil-Guerrero JL, Campra P (2009) Cytotoxicity screening of endemic plants from Guayana highlands. Trop Biomed 26(2):149–154

    PubMed  Google Scholar 

  • Guittet E, Stoven V, Lallemand JY, Ramiandrasoa F, Kunesch G, Moretti C (1988) Pitumbin, a novel kolavene acylal from Casearia pitumba Pleumer. Tetrahedron 44(10):2893–2901

    CAS  Google Scholar 

  • Gunasekera SP, Sultanbawa MUS, Balasubramaniam S (1977) Triterpenes of some species of Flacourtiaceae. Phytochemistry 16(6):788–789

    CAS  Google Scholar 

  • Gupta SS, Verma SCL, Garg VP, Khandelwal P, Bathma ML (1967) The antidiabetic effects of Casearia esculenta. Indian J Exp Biol 55(7):754–763

    CAS  Google Scholar 

  • Hack C, Longhi SJ, Boligon AA, Murari DTAB, Pauleski DT (2005) Análise fitossociológica de um fragmento de floresta estacional decidual no município de Jaguari, RS. Cienc Rural 35(5):1083–1091

    Google Scholar 

  • Haug CE, Colvin RB, Delmonico FL, Auchincloss H, Tolkoff-Rubin N, Preffer FI, Rothlein R, Norris S, Scharschmidt L, Cosimi AB (1993) Phase I trial of immunosuppression with anti-ICAM-1 (CD54) mAb in renal allograft recipients. Transplantation 55:766–773

    CAS  PubMed  Google Scholar 

  • Heinrich M, Chan J, Wanke S, Neinhuis C, Simmonds MS (2009) Local uses of Aristolochia species and content of nephrotoxic aristolochic acid 1 and 2-a global assessment based on bibliographic sources. J Ethnopharmacol 125:108–144

    CAS  PubMed  Google Scholar 

  • Hoehne FC (1939) Plantas e substâncias vegetais tóxicas e medicinais. Graphicars, São Paulo, pp 196–199

    Google Scholar 

  • Hoehne FC (1987) Plantas e Substâncias Vegetais Tóxicas e Medicinais. Depto. de Botânica de Sâo Paulo. Ed. Estado de São Paulo

  • Hoehne FC, Kuhlmann M, Handro O (1941) O Jardim Botânico de São Paulo. Secretaria da Agricultura, São Paulo, p 518

  • Huang DM, Shen YC, Wu S, Huang YT, Kung FL, Teng CM, Guh JF (2004) Investigation of extrinsic and intrinsic apoptosis pathways of new clerodane diterpenoids in human prostate cancer PC-3 cells. Eur J Pharmacol 503:17–24

    CAS  PubMed  Google Scholar 

  • Hunter MS, Corley DG, Carron CP, Rowold E, Kilpatrick BF, Durley RC (1997) Four new clerodane diterpenes from the leaves of Casearia guianensis which inhibit the interaction of leukocyte function antigen 1 with intercellular adhesion molecule 1. J Nat Prod 60(9):894–899

    CAS  PubMed  Google Scholar 

  • Hutchinson J (1959) The families of flowering plants, 2nd edn. Oxford University Press, London

    Google Scholar 

  • Hutchinson J (1973) The families of flowering plants arranged according to a new system based on their probable phylogeny, 3rd edn. Clarendon Press, London

    Google Scholar 

  • Iranshahi M, Sahebkar A, Konoshima T, Tokuda H (2009) Cancer chemopreventive activity of prenylated coumarin, umbelliprenin, in vivo. Eur J Cancer Prev 18:412–415

    CAS  PubMed  Google Scholar 

  • Ismail M, Bagalkotkar G, Iqbal S, Adamu HA (2012) Anticancer properties and phenolic contents of sequentially prepared extracts from different parts of selected medicinal plants indigenous to Malaysia. Molecules 17:5745–5756

    CAS  PubMed  Google Scholar 

  • Itokawa H, Totsuka N, Takeya K, Watanabe K, Obata E (1988) Antitumor principles from Casearia sylvestris SW. (Flacourtiaceae), structure elucidation of new clerodane diterpenes by 2D NMR spectroscopy. Chem Pharm Bull 36(4):1585–1588

    CAS  PubMed  Google Scholar 

  • Itokawa H, Totsuka N, Morita H, Takeya KIY, Schenkel EP, Motidome M (1990) New antitumor principles, casearins A–F, for Casearia sylvestris Sw. (Flacourtiaceae). Chem Pharm Bull 38(12):3384–3388

    CAS  PubMed  Google Scholar 

  • Itokawa H, Takeya K, Hitotsuyanagi Y, Morita H (2000) Antitumor compounds isolated from higher plants. J Biochem Mol Biol Biophys 4(3):213–222

    Google Scholar 

  • Izidoro LFM, Rodrigues VM, Rodrigues RS, Ferro EV, Hamaguchi A, Giglio JR, Homsi-Brandeburgo MI (2003) Neutralization of some hematological and hemostatic alterations induced by neuwiedase, a metalloproteinase isolated from Bothrops neuwiedi pauloensis snake venom, by the aqueous extract from Casearia mariquitensis (Flacourtiaceae). Biochimie 85(7):669–675

    CAS  PubMed  Google Scholar 

  • Kanokmedhakul S, Kanokmedhakul K, Kanarsa T, Buayairaksa M (2005) New bioactive clerodane diterpenoids from the bark of Casearia grewiifolia. J Nat Prod 68(2):183–188

    CAS  PubMed  Google Scholar 

  • Kanokmedhakul S, Kanokmedhakul K, Buayairaksa M (2007) Cytotoxic clerodane diterpenoids from fruits of Casearia grewiifolia. J Nat Prod 70(7):1122–1126

    CAS  PubMed  Google Scholar 

  • Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144

    CAS  PubMed  Google Scholar 

  • Khan MR, Gray AI, Sadler IH, Waterman PG (1990) Clerodane diterpenes from Casearia corymbosa stem bark. Phytochemistry 29(11):3591–3595

    CAS  Google Scholar 

  • Kingston DGI (2008) A natural love of natural products. J Org Chem 73:3975–3984

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kirtikar KR, Basu BD (1935) Indian medicinal plants, vol II. 2nd edn. Lalit Mohan Basu, Allahabad, p 1092

  • Krishnamurthi A (1992) Casearia tomentosa. In: Krishnamurthi A (ed) Wealth of India, raw materials. CSIR, Publication and Information Directorate, New Delhi, pp 325–326

    Google Scholar 

  • Kulip J (2003) An ethnobotanical survey of medicinal and other useful plants of Muruts in Sabah, Malaysia. Telopea 10(1):81–98

    Google Scholar 

  • Li FF, Chai XY, Xu ZR, Ren HY, Tu PF (2008) Chemical constituents of Casearia velutina. Chin Tradit Herb Drugs 39(7):984–986

    CAS  Google Scholar 

  • Li FF, Guo ZQ, Chai XY, Tu PF (2012) Triterpenoids from the stems of Casearia velutina. J Chin Pharm Sci 21:273–277

    CAS  Google Scholar 

  • Little EL, Wadsworth FL (1964) Common trees of Puerto Rico and Virgin Islands. Department of Agriculture, Washington, p 548

    Google Scholar 

  • Liu L, Guo ZQ, Chai XY, Zhao MB, Lu YN, Tu PF (2013) Phenolic glycosides from the stems of Homalium ceylanicum (Gardner) Bentham (Flacourtiaceae/Salicaceae sensu lato). Biochem Syst Ecol 46:55–58

    CAS  Google Scholar 

  • Lorenzi H, Matos FJA (2002) Plantas Medicinais no Brasil: Nativas e exóticas. Instituto Plantarum, de Estudos da Flora LTDA, Nova Odessa, SP, pp 23–24, 220–221

  • Maistro EL, Carvalho JCT, Mantovani MS (2004) Evaluation of the genotoxic potential of the Casearia sylvestris extract on HTC and V79 cells by the comet assay. Toxicol In Vitro 18(3):337–342

    CAS  PubMed  Google Scholar 

  • Mattos ES, Frederico MJS, Colle TD, Pieri DV, Peters RR, Piovezan AP (2007) Evaluation of antinociceptive activity of Casearia sylvestris and possible mechanism of action. J Ethnopharmacol 112(1):1–6

    PubMed  Google Scholar 

  • Merritt AT, Ley SV (1992) Clerodane diterpenoids. Nat Prod Rep 9:243–287

    CAS  PubMed  Google Scholar 

  • Mersch-Sundermann V, Bahorun T, Stahl T, Neergheen VS, Soobrattee MA, Wohlfarth R, Sobel R, Brunn HE, Schmeiser I, Lamy E, Aruoma Q (2006) Assessment of the DNA damaging potency and chemopreventive effects towards BaPinduced genotoxicity in human derived cells by Monimiastrum globosum an endemic Mauritian plant. Toxicol In Vitro 20(8):1427–1434

    CAS  PubMed  Google Scholar 

  • Mesquita ML, Desrivot J, Bories C, Fournet A, Paula JE, Grellier P, Espindola LS (2005) Antileishmanial and trypanocidal activity of Brazilian Cerrado plants. Mem Inst Oswaldo Cruz 100(7):783–787

    PubMed  Google Scholar 

  • Mesquita ML, Grellier P, Mambu L, Paula JE, Espindola LS (2007) In vitro antiplasmodial activity of Brazilian Cerrado plants used as traditional remedies. J Ethnopharmacol 110(1):165–170

    PubMed  Google Scholar 

  • Mesquita ML, Paula JE, Pessoa C, Moraes MO, Costa-Lotufo LV, Grougnet R, Michel S, Tillequin F, Espindola LS (2009) Cytotoxic activity of Brazilian Cerrado plants used in traditional medicine against cancer cell lines. J Ethnopharmacol 123(3):439–445

    PubMed  Google Scholar 

  • Morais SM, Machado MIL, Machado SMF, Facundo VA, Militao JSLT, Ribeiro AA (1997) Essential oil of Casearia grandiflora Camb. J Essent Oil Res 9(6):697–698

    Google Scholar 

  • Morita H, Nakayama M, Kojima H, Takeya K, Itokawa H, Schenkel EP, Motidome M (1991) Structures and cytotoxic activity relationship of casearins, new clerodane diterpenes from Casearia sylvestris Sw. Chem Pharm Bull 39(3):693–697

    CAS  PubMed  Google Scholar 

  • Mors WB, Nascimento MC, Pereira BMR, Pereira NA (2000) Plant natural products active against snake bite-the molecular approach. Phytochemistry 55:627–642

    CAS  PubMed  Google Scholar 

  • Mosaddik A, Waterman PG (2006) A sesquiterpene, clerodane diterpenes and a furanone from the roots of Casearia multinervosa (Flacourtiaceae/Salicaceae). Nat Prod Commun 1(8):601–607

    CAS  Google Scholar 

  • Mosaddik MA, Banbury L, Forster P, Booth R, Markham J, Leach D, Waterman PG (2004) Screening of some Australian Flacourtiaceae species for in vitro antioxidant, cytotoxic and antimicrobial activity. Phytomedicine 11(5):461–466

    CAS  PubMed  Google Scholar 

  • Mosaddik A, Forster PI, Booth R, Waterman PG (2006a) New clerodane and halimane diterpenes from the leaves and woody stems of Casearia grayi (Flacourtiaceae/Salicaceae). Nat Prod Commun 1(6):441–448

    CAS  Google Scholar 

  • Mosaddik MA, Flowers A, Karagianis G, Waterman PG (2006b) New phenolic glycosides from the stems and leaves of Casearia multinervosa. Nat Prod Res 20(6):641–647

    CAS  Google Scholar 

  • Mosaddik MA, Forster PI, Booth R, Waterman PG (2007a) Clerodane diterpenes from the stems of Casearia grewiifolia var. gelonioides (Flacourtiaceae/Salicaceae sensu lato). Biochem Syst Ecol 35(9):631–633

    CAS  Google Scholar 

  • Mosaddik MA, Forster PI, Booth R, Waterman PG (2007b) Phenolic glycosides from some Australian species of Flacourtiaceae (Salicaceae sensu lato). Biochem Syst Ecol 35(3):166–168

    CAS  Google Scholar 

  • Napolitano DR, Mineo JR, Souza MA, Paula JE, Espindola LS, Espindola FS (2005) Down-modulation of nitric oxide production in murine macrophages treated with crude plant extracts from the Brazilian Cerrado. J Ethnopharmacol 99(1):37–41

    CAS  PubMed  Google Scholar 

  • Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311–335

    PubMed Central  CAS  PubMed  Google Scholar 

  • Oberlies NH, Burgess JP, Navarro HA, Pinos RE, Fairchild CR, Peterson RW, Soejarto DD, Farnsworth NR, Kinghorn AD, Wani MC, Wall ME (2002) Novel bioactive clerodane diterpenoids from the leaves and twigs of Casearia sylvestris. J Nat Prod 65:95–99

    CAS  PubMed  Google Scholar 

  • Oliveira AM, Santos AG, Santos RA, Csipak AR, Olivato C, Silva IC, Freitas MB, Bassi CL, Cavalheiro AJ, Bolzani VS, Silva DHS, Sakamoto-Hojo ET, Takahashi CS, Soares CP (2009) Ethanolic extract of Casearia sylvestris and its clerodane diterpene (caseargrewiin F) protect against DNA damage at low concentrations and cause DNA damage at high concentrations in mice’s blood cells. Mutagenesis 24(6):501–506

    PubMed  Google Scholar 

  • Oshima-Franco Y, Alves CMV, Andreo Filho N, Gerenutti M, Cintra ACO, Leite GB, Rodrigues-Simioni L, Silva M (2005) Neutralization of the neuromuscular activity of bothropstoxin-1, a myotoxin from Bothrops jararacussus snake venom, by a hydroalcoholic extract of Casearia sylvestris Sw. (Guacatonga). J Venom Anim Toxins 11(4):465–478

    CAS  Google Scholar 

  • Prakasam A, Sethupathy S, Pugalendi KV (2002) Antihyperglycemic effect of Casearia esculenta root extracts in streptozotocin-induced diabetic rats. Pharmazie 57(11):758–760

    CAS  PubMed  Google Scholar 

  • Prakasam A, Sethupathy S, Pugalendi KV (2003a) Effect of Casearia esculenta root extract on blood glucose and plasma antioxidant status in streptozotocin diabetic rats. Pol J Pharmacol 55(1):43–49

    PubMed  Google Scholar 

  • Prakasam A, Sethupathy S, Pugalendi KV (2003b) Erythrocyte redox status in streptozotocin diabetic rats: effect of Casearia esculenta root extract. Pharmazie 58(12):920–924

    CAS  PubMed  Google Scholar 

  • Prakasam A, Sethupathy S, Pugalendi KV (2003c) Glycaemic control by Casearia esculenta-a short duration study in albino rats. Pharmazie 58(1):49–52

    CAS  PubMed  Google Scholar 

  • Prakasam A, Sethupathy S, Pugalendi KV (2003d) Hypolipidaemic effect of Casearia esculenta root extracts in streptozotocin-induced diabetic rats. Pharmazie 58(11):828–832

    CAS  PubMed  Google Scholar 

  • Prakasam A, Sethupathy S, Pugalendi KV (2004) Influence of Casearia esculenta root extract on protein metabolism and marker enzymes in streptozotoci-induced diabetic rats. Pol J Pharmacol 56(5):587–593

    CAS  PubMed  Google Scholar 

  • Prakasam A, Sethupathy S, Pugalendi KV (2005a) Influence of Casearia esculenta root extract on glycoprotein components in streptozotocin diabetic rats. Pharmazie 60(3):229–232

    CAS  PubMed  Google Scholar 

  • Prakasam A, Sethupathy S, Pugalendi KV (2005b) Modulating role of ‘Saptarangi’ (Casearia esculenta) on membrane bound ATPase in streptozotocin diabetic rats. Pharmazie 60(11):874–877

    CAS  PubMed  Google Scholar 

  • Prakash CVS, Hoch JM, Kingston DGI (2002) Structure and stereochemistry of new cytotoxic clerodane diterpenoids from the bark of Casearia lucida from the Madagascar rainforest. J Nat Prod 65(2):100–107

    CAS  Google Scholar 

  • Prieto AM, Santos AG, Csipak AR, Caliri CM, Silva IC, Arbex MA, Silva FS, Marchi MRR, Cavalheiro AJ, Silva DHS, Bolzani VS, Soares CP (2012) Chemopreventive activity of compounds extracted from Casearia sylvestris (Salicaceae) Sw against DNA damage induced by particulate matter emitted by sugarcane burning near Araraquara, Brazil. Toxicol Appl Pharmacol 265(3):368–372

    CAS  PubMed  Google Scholar 

  • Prieto AM, Santos AG, Oliveira APS, Cavalheiro AJ, Silva DHS, Bolzani VS, Varanda EA, Soares CP (2013) Assessment of the chemopreventive effect of casearin B, a clerodane diterpene extracted from Casearia sylvestris (Salicaceae). Food Chem Toxicol 53:153–159

    CAS  PubMed  Google Scholar 

  • Raslan DS, Jamal CM, Duarte DS, Borges MH, Lima ME (2002) Anti-PLA2 action test of Casearia sylvestris Sw. Boll Chim Farm 141(6):457–460

    CAS  PubMed  Google Scholar 

  • Rayanil K, Nimnoun C, Tuntiwachwuttikul P (2012) New phenolics from the wood of Casearia grewiifolia. Phytochem Lett 5(1):59–62

    CAS  Google Scholar 

  • Rodrigues AMS, Paula JE, Degallier N, Molez JE, Espindola LS (2006) Larvicidal activity of some Cerrado plant extracts against Aedes aegypti. J Am Mosq Control 22(2):314–317

    CAS  Google Scholar 

  • Ruppelt BM, Pereira EF, Goncalves LC, Pereira NA (1991) Pharmacological screening of plants recommended by folk medicine as anti-snake venom-I. Analgesic and anti-inflammatory activities. Mem Inst Oswaldo Cruz 86:2203–2205

    Google Scholar 

  • Salvador MJ, Carvalho JE, Wisniewski AJ, Kassuya CAL, Santos EP, Riva D, Stefanello MEA (2011) Chemical composition and cytotoxic activity of the essential oil from the leaves of Casearia lasiophylla. Rev Bras Farmacogn 21(5):864–868

    CAS  Google Scholar 

  • Santos AG, Perez CC, Tininis AG, Bolzani VS, Cavalheiro AJ (2007) Clerodane diterpenes from leaves of Casearia sylvestris Swartz. Quim Nova 30(5):1100–1103

    Google Scholar 

  • Santos AG, Ferreira PMP, Vieira-Junior GM, Perez CC, Tininis AG, Silva GH, Silva Bolzani V, Costa-Lotufo LV, Pessoa CO, Cavalheiro AJ (2010) Casearin X, its degradation product and other clerodane diterpenes from leaves of Casearia sylvestris: evaluation of cytotoxicity against normal and tumor human cells. Chem Biodivers 7(1):205–215

    PubMed  Google Scholar 

  • Scavone O, Grecchi R, Panizza S, Silva RAPS (1979) Guaçatonga (Casearia sylvestris Swartz): aspectos botânicos da planta, ensaios fitoquímicos e propriedade cicatrizante da folha. An Farm Quím São Paulo 19:73–81

    Google Scholar 

  • Schneider NFZ, Moura NF, Colpo T, Flach A (2006) The volatile oil composition and antimicrobial activity of Casearia sylvestris Swart. Rev Bras Farm 87(4):112–114

    CAS  Google Scholar 

  • Schoenfelder T, Pich CT, Geremias R, Avila S, Daminelli EN, Pedrosa RC, Bettiol J (2008) Antihyperlipidemic effect of Casearia sylvestris methanolic extract. Fitoterapia 79(6):465–467

    PubMed  Google Scholar 

  • Sertie JA, Carvalho JC, Panizza S (2000) Antiulcer activity of the crude extract from the leaves of Casearia sylvestris. Pharm Biol 38(2):112–119

    CAS  PubMed  Google Scholar 

  • Shaari K, Waterman PG (1994) Podophyllotoxin-type lignans as major constituents of the stems and leaves of Casearia Clarkei. J Nat Prod 57(6):720–724

    CAS  Google Scholar 

  • Shen YC, Wang CH, Cheng YB, Wang LT, Guh JH, Chien CT, Khalil AT (2004a) New cytotoxic clerodane diterpenoids from the leaves and twigs of Casearia membranacea. J Nat Prod 67(3):316–321

    CAS  PubMed  Google Scholar 

  • Shen YC, Wang LT, Wang CH, Khalil AT, Guh JH (2004b) Two new cytotoxic clerodane diterpenoids from Casearia membranacea. Chem Pharm Bull 52(1):108–110

    CAS  PubMed  Google Scholar 

  • Shen YC, Cheng YB, Ahmed AF, Lee CL, Chen SY, Chien CT, Kuo YH, Tzeng GL (2005a) Cytotoxic clerodane diterpenoids from Casearia membranacea. J Nat Prod 68(11):1665–1668

    CAS  PubMed  Google Scholar 

  • Shen YC, Cheng YB, Chen YH, Khalil AT, Ko CL (2005b) Three new clerodane diterpene derivatives from Casearia membranacea. J Chin Chem Soc Taipei 52(6):1263–1268

    CAS  Google Scholar 

  • Shen YC, Lee CL, Khalil AT, Cheng YB, Chien CT, Kuo YH (2005c) New clerodane diterpenoids from Casearia membranacea. Helv Chim Acta 88(1):68–77

    CAS  Google Scholar 

  • Silva AC, Balz D, Souza JBDA, Morsch VM, Correa MC, Zanetti GD, Manfron MP, Schetinger MRC (2006) Inhibition of NTPDase, 5′-nucleotidase, Na+/K+-ATPase and acetylcholinesterase activities by subchronic treatment with Casearia sylvestris. Phytomedicine 13(7):509–514

    PubMed  Google Scholar 

  • Silva SL, Calgarotto AK, Chaar JS, Marangoni S (2008a) Isolation and characterization of ellagic acid derivatives isolated from Casearia sylvestris SW aqueous extract with anti-PLA2 activity. Toxicon 52(6):655–666

    PubMed  Google Scholar 

  • Silva SL, Chaar JS, Damico DCS, Figueiredo PMS, Yano T (2008b) Antimicrobial activity of ethanol extract from leaves of Casearia sylvestris. Pharma Biol 46(5):347–351

    Google Scholar 

  • Silva SL, Chaar JS, Figueiredo PMS, Yano T (2008c) Cytotoxic evaluation of essential oil from Casearia sylvestris Sw on human cancer cells and erythrocytes. Acta Amaz 38(1):107–112

    Google Scholar 

  • Silva SL, Chaar JS, Yano T (2009) Chemotherapeutic potential of two gallic acid derivative compounds from leaves of Casearia sylvestris Sw (Flacourtiaceae). Eur J Pharmacol 608(1–3):76–83

    PubMed  Google Scholar 

  • Simonsen HT, Nordskjold JB, Smitt UW, Nyman U, Palpu P, Joshi P, Varughese G (2001) In vitro screening of Indian medicinal plants for antiplasmodial activity. J Ethnopharmacol 74(2):195–204

    CAS  PubMed  Google Scholar 

  • Sleumer HO (1980) Flora Neotropica (Flacourtiaceae). The New York Botanical Garden, New York

    Google Scholar 

  • Smitinand T (2001) Thai plant names, revised edn. Prachachon Co. Limited, Bangkok, pp 182, 185

  • Soltis DE, Soltis PS, Chase MW, Mort ME, Albach DC, Zanis M, Savolainen V, Hahn WH, Hoot SB, Fay MF, Axtell M, Swensen SM, Prince LM, Kress WJ, Nixon KC, Farris JA (2000) Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences. Bot J Linn Soc 133:381–461

    Google Scholar 

  • Sousa FG, Schneider NFZ, Mendes CE, Moura NF, Denardin RBN, Matuo R, Mantovani MS (2007) Clastogenic and anticlastogenic effect of the essential oil from Casearia sylvestris Swart. J Essent Oil Res 19(4):376–378

    CAS  Google Scholar 

  • Stefanello MEA, Wisniewski AJ, Simionatto EL, Cervi AC (2010) Essential oil composition of Casearia decandra Jacq. J Essent Oil Res 22(2):157–158

    CAS  Google Scholar 

  • Sukumar D, Nambi R, Arivudai ST, Sulochana N, Bhaskar EA (1982) Chemical and pharmacological studies on the leaves of Casearia tomentosa. Fitoterapia 53(5–6):163–165

    CAS  Google Scholar 

  • Talapatra SK, Goswami S, Ganguly NC, Talapatra B (1980) Structure of casegravol: a new monomeric coumarindiol from Casearia graveolens Dalz. Chem Ind Lond 4:154–155

    Google Scholar 

  • Talapatra SK, Ganguly NC, Goswami S, Talapatra B (1983) Chemical constituents of Casearia graveolens: some novel reactions and the preferred molecular conformation of the major coumarin, micromelin. J Nat Prod 46(3):401–408

    CAS  Google Scholar 

  • Tavares DC, Mazzaron Barcelos GR, Silva LF, Chacon Tonin CC, Bastos JK (2006) Propolis-induced genotoxicity and antigenotoxicity in Chinese hamster ovary cells. Toxicol In Vitro 20(7):1154–1158

    CAS  PubMed  Google Scholar 

  • Taylor L (2002) Herbal secrets of the rainforest: technical data report for guaçatonga. Sage Press, Austin, TX, pp 1–4

    Google Scholar 

  • The Wealth of India (1992) A dictionary of Indian raw materials and industrial products. Raw material, CaC revised edn. Publication and Information Directorate, New Delhi, p 325

    Google Scholar 

  • Tobias ML, Oliveira F, Oliveira KP, Marques LC (2007) Quality control of vegetable drugs of the manipulation drugstores of Maringa (Parana Brazil). Rev Eletr Farm 4:95–103

    Google Scholar 

  • Torres RB, Yamamoto K (1986) Taxonomia das espécies de Casearia Jacq. (Flacourtiaceae) do estado de São Paulo. Rev Bras Bot 9:239–258

    Google Scholar 

  • Vieira-Junior GM, Goncalves TO, Regasini LO, Ferreira PMP, Pessoa CO, Costa-Lotufo LV, Torres RB, Boralle N, Bolzani VS, Cavalheiro AJ (2009) Cytotoxic clerodane diterpenoids from Casearia obliqua. J Nat Prod 72(10):1847–1850

    Google Scholar 

  • Vieira-Junior GM, Dutra LA, Ferreira PMP, Moraes MO, Costa Lotufo LV, Pessoa CO, Torres RB, Boralle N, Bolzani VS, Cavalheiro AJ (2011) Cytotoxic clerodane diterpenes from Casearia rupestris. J Nat Prod 74(4):776–781

    CAS  PubMed  Google Scholar 

  • Vijayakumar EKS, Bal-Tembe S, Joshi KS, Deore VB (2002) Esculentins A & B, two new diterpenes from Casearia esculenta. Indian J Chem B 41(12):2706–2708

    Google Scholar 

  • Wang W, Ali Z, Li XC, Khan IA (2009a) Clerodane and ent-kaurane diterpene glycosyl and glycoside derivatives from the leaves of Casearia sylvestris. Helv Chim Acta 92(9):1829–1839

    CAS  Google Scholar 

  • Wang W, Ali Z, Li XC, Smillie TA, Guo DA, Khan IA (2009b) New clerodane diterpenoids from Casearia sylvestris. Fitoterapia 80(7):404–407

    CAS  PubMed  Google Scholar 

  • Wang W, Li XC, Ali Z, Khan IA (2009c) Two new C13 nor-isoprenoids from the leaves of Casearia sylvestris. Chem Pharm Bull 57(6):636–638

    CAS  PubMed  Google Scholar 

  • Wang W, Zhao JP, Wang YH, Smillie TA, Li XC, Khan IA (2009d) Diterpenoids from Casearia sylvestris. Planta Med 75(13):1436–1441

    CAS  PubMed  Google Scholar 

  • Wang W, Ali Z, Li XC, Khan IA (2010a) A new ent-labdane diterpene glycoside from the leaves of Casearia sylvestris. Nat Prod Commun 5(5):771–774

    CAS  PubMed  Google Scholar 

  • Wang W, Ali Z, Li XC, Khan IA (2010b) Neolignans from the leaves of Casearia sylvestris Swartz. Helv Chim Acta 93(1):139–146

    CAS  Google Scholar 

  • Warburg O (1893) Flacourtiaceae. In: Engler A, Prantl A (eds) Die Natürlichen Pflanzenfamilien, 1 ed 6a:46

  • Weniger B, Haag-Berrurier M, Rohmer M, Anton R (1978) Some constituents of Casearia ilicifolia Vent. Planta Med 33(2):170–172

    CAS  Google Scholar 

  • Weniger B, Haag-Berrurier M, Anton R (1982) Plants of Haiti used as antifertility agents. J Ethnopharmacol 6(1):67–84

    CAS  PubMed  Google Scholar 

  • Whitson EL, Thomas CL, Henrich CJ, Sayers TJ, McMahon JB, McKee TC (2010) Clerodane diterpenes from Casearia arguta that act as synergistic TRAIL sensitizers. J Nat Prod 73(12):2013–2018

    PubMed Central  CAS  PubMed  Google Scholar 

  • Williams RB, Norris A, Miller JS, Birkinshaw C, Ratovoson F, Andriantsiferana R, Rasamison VE, Kingston DGI (2007) Cytotoxic clerodane diterpenoids and their hydrolysis products from Casearia nigrescens from the rainforest of Madagascar. J Nat Prod 70(2):206–209

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yoganarasimhan SN (2000) Medicinal Plants of India, TamilNadu. International Book Publisher, Print Cyber Media, Bangalore, pp 109–110

  • Zeiger E (2003) Illusions of safety: antimutagens can be mutagens and anticarcinogens can be carcinogens. Mutat Res 543:191–194

    CAS  PubMed  Google Scholar 

  • Zhao QS, Cong YW (2007) Michael reaction acceptor molecules in chemical biology. Prog Chem 19:1972–1976

    CAS  Google Scholar 

Download references

Acknowledgments

This paper was supported by the Scientific Research Starting Foundation for Returned Overseas Chinese Scholars, Ministry of Education, China (2013-07).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pengfei Tu or Xingyun Chai.

Additional information

Li Xia and Qiang Guo have contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, L., Guo, Q., Tu, P. et al. The genus Casearia: a phytochemical and pharmacological overview. Phytochem Rev 14, 99–135 (2015). https://doi.org/10.1007/s11101-014-9336-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-014-9336-6

Keywords

Navigation