Skip to main content

Advertisement

Log in

Suppression of essential pro-inflammatory signaling pathways by natural agents for the therapy of Multiple Myeloma

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Multiple myeloma (MM) is a malignant plasma cell tumor often arising in the bone marrow and is the most common non-Hodgkin’s haematological malignancy contributing 13 % of all malignancy and 1 % of neoplasia. MM arises from a pre-malignant condition known as ‘monoclonal gammapathy of undermined significance’. The aberrant antibodies that are produced leads to dysregulated humoral immunity. Studies in the last few years have revealed that various pro-inflammatory signaling pathways including nuclear factor-kappaB (NF-κB), signal transducer and activator of transcription 3 (STAT3), activator protein 1 (AP-1), phosphatidylinositol-3-kinase (PI3K/AKT), receptor Met and its ligand hepatocyte growth factor, and Wnt-β catenin play a pivotal role in the initiation and progression of MM. These signaling pathways can be induced by different pro-inflammatory cytokines and chemokines in MM cells. Hence, it is imperative to clearly dissect the role of various pro-inflammatory signaling pathways for the better understanding of the disease process and also for developing effective therapeutic interventions. In this review, we comprehensively analyze the detailed role of various pro-inflammatory signaling pathways involved in myeloma-genesis and its progression. Also, we discuss in detail the potential contribution of distinct inhibitors of pro-inflammatory signaling pathways derived from the natural sources that can be utilized both for the prevention and the treatment of MM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AP-1:

Activator protein-1

APRIL:

A proliferation inducing ligand

ASK1:

Apoptosis signal-regulating kinase 1

BAD:

Bcl-2-associated death promoter

BAFF:

B-cell activating factor

Bcl-2:

B-cell lymphoma 2

Bcl-xL:

B-cell lymphoma-extra large

BCMA:

B-cell maturation antigen

BDNF:

Brain-derived neurotrophic factor

BM:

Bone marrow

BMSC:

Bone marrow stromal cells

COX-2:

CYCLOOXYGENASE-2

DEPTOR:

DEP domain containing MTOR-interacting protein

Dex:

Dexamethasone

DKK1:

Dickkopf-related protein 1

DVL:

Dishevelled

EGF:

Epidermal Growth factor

FGFR3:

Fibroblast growth factor receptor 3

FZD:

Frizzled

GSK3β:

Glycogen synthase kinase 3β

HGF:

Hepatocyte-growth factor

ICAM-1:

Intracellular adhesion molecule-1

IL-6:

Interleukin-6

IP10:

IFNgamma-inducible 10 kDa protein

I-TAC:

Interferon-inducible T-cell Alpha Chemoattractant

JNK:

C-Jun N-terminal kinases

KO:

Knock-out

LRP:

Low-density lipoprotein

MAF:

Musculoaponeurotic fibrosarcoma oncogene

MAPK-ERK:

Mitogen-activated protein kinase-extracellular signal regulated kinase

Mcl-1:

Myeloid leukemia sequence 1

MCP-1:

Monocyte chemotactic protein-1

MGUS:

Monoclonal gammopathy of undetermined significance

Mig:

Monocyte/macrophage-activating IFNγ-inducible protein

MIP-1α:

Macrophage inflammatory protein-1alpha

NF-κB:

Nuclear factor-kappa B

MMP:

Matrix metalloproteinases

NIK:

NF-κB inducing kinase

OPG:

Osteoprotegerin

OPN:

Osteopontin

PI3K:

Phosphoinositide 3-kinase

PKC:

Protein kinase C

PTGS2:

Prostaglandin-endoperoxide synthase

RANKL:

Receptor activator of nuclear factor kappa-B ligand

ROCK:

Rho-associated protein kinase

SDF-1α:

Stromal cell derived factor-1 alpha

SFRP:

Secreted frizzled related protein

SOCS:

Suppressors of cytokine signalling

STAT3:

Signal transducer and activator of transcription

TACI:

Transmembrane activator and calcium modulator and cyclophilin ligand interactor

TAK1:

Transforming growth factor activated kinase 1

TNF-α:

Tumor necrosis factor-alpha

TQ:

Thymoquinone

TRACP:

Tartrate-resistant acid phosphatise

TRAF:

TNF receptor associated factor

VCAM-1:

Vascular cell adhesion molecule-1

XIAP:

X-linked inhibitor of apoptosis protein

References

  • Aarden LA (1989) Hybridoma growth factor. Ann N Y Acad Sci 557:192–199

    CAS  PubMed  Google Scholar 

  • Abe M (2011) Myeloma bone disease and RANKL signaling. Clin Calcium 21:1167–1174

    CAS  PubMed  Google Scholar 

  • Abe M, Hiura K, Wilde J et al (2004) Osteoclasts enhance myeloma cell growth and survival via cell–cell contact: a vicious cycle between bone destruction and myeloma expansion. Blood 104:2484–2491

    CAS  PubMed  Google Scholar 

  • Adler V, Pincus MR, Minamoto T et al (1997) Conformation-dependent phosphorylation of p53. Proc Natl Acad Sci USA 94:1686–1691

    CAS  PubMed  Google Scholar 

  • Aggarwal BB (2004) Nuclear factor-κB: the enemy within. Cancer Cell 6:203–208

    CAS  PubMed  Google Scholar 

  • Aggarwal BB, Gehlot P (2009) Inflammation and cancer: how friendly is the relationship for cancer patients? Curr Opin Pharmacol 9:351–369

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aggarwal BB, Shishodia S (2006) Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol 71:1397–1421

    CAS  PubMed  Google Scholar 

  • Aggarwal BB, Sung B (2009) Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice with modern targets. Trends Pharmacol Sci 30:85–94

    CAS  PubMed  Google Scholar 

  • Aggarwal BB, Bhardwaj A, Aggarwal RS et al (2004) Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Res 24:2783–2840

    CAS  PubMed  Google Scholar 

  • Aggarwal BB, Sethi G, Ahn KS et al (2006a) Targeting signal-transducer-and-activator-of-transcription-3 for prevention and therapy of cancer: modern target but ancient solution. Ann N Y Acad Sci 1091:151–169

    CAS  PubMed  Google Scholar 

  • Aggarwal BB, Shishodia S, Sandur SK et al (2006b) Inflammation and cancer: how hot is the link? Biochem Pharmacol 72:1605–1621

    CAS  PubMed  Google Scholar 

  • Aggarwal R, Ghobrial IM, Roodman GD (2006c) Chemokines in multiple myeloma. Exp Hematol 34:1289–1295

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aggarwal BB, Shishodia S, Takada Y et al (2006c) TNF blockade: an inflammatory issue. Ernst Schering Research Foundation workshop, pp 161–186

  • Aggarwal BB, Kunnumakkara AB, Harikumar KB et al (2009a) Signal transducer and activator of transcription-3, inflammation, and cancer: how intimate is the relationship? Ann N Y Acad Sci 1171:59–76

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aggarwal BB, Vijayalekshmi RV, Sung B (2009b) Targeting inflammatory pathways for prevention and therapy of cancer: short-term friend, long-term foe. Clin Cancer Res 15:425–430

    CAS  PubMed  Google Scholar 

  • Ahn KS, Aggarwal BB (2005) Transcription factor NF-kappaB: a sensor for smoke and stress signals. Ann N Y Acad Sci 1056:218–233

    CAS  PubMed  Google Scholar 

  • Ahn KS, Sethi G, Aggarwal BB (2007) Nuclear factor-kappa B: from clone to clinic. Curr Mol Med 7:619–637

    CAS  PubMed  Google Scholar 

  • Akira S, Nishio Y, Inoue M et al (1994) Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130-mediated signaling pathway. Cell 77:63–71

    CAS  PubMed  Google Scholar 

  • Alexandrakis MG, Passam FH, Sfiridaki A et al (2003) Elevated serum concentration of hepatocyte growth factor in patients with multiple myeloma: correlation with markers of disease activity. Am J Hematol 72:229–233

    CAS  PubMed  Google Scholar 

  • Alsayed Y, Ngo H, Runnels J et al (2007) Mechanisms of regulation of CXCR4/SDF-1 (CXCL12)-dependent migration and homing in multiple myeloma. Blood 109:2708–2717

    CAS  PubMed  Google Scholar 

  • Anand P, Kunnumakkara AB, Sundaram C et al (2008a) Cancer is a preventable disease that requires major lifestyle changes. Pharm Res 25:2097–2116

    CAS  PubMed Central  PubMed  Google Scholar 

  • Anand P, Sundaram C, Jhurani S et al (2008b) Curcumin and cancer: an “old-age” disease with an “age-old” solution. Cancer Lett 267:133–164

    CAS  PubMed  Google Scholar 

  • Anderson KC, Carrasco RD (2011) Pathogenesis of myeloma. Annu Rev Pathol 6:249–274

    CAS  PubMed  Google Scholar 

  • Anderson MW, Zhao S, Ai WZ et al (2010) C-C chemokine receptor 1 expression in human hematolymphoid neoplasia. Am J Clin Pathol 133:473–483

    PubMed  Google Scholar 

  • Ang E, Liu Q, Qi M et al (2011) Mangiferin attenuates osteoclastogenesis, bone resorption, and RANKL-induced activation of NF-kappaB and ERK. J Cell Biochem 112:89–97

    CAS  PubMed  Google Scholar 

  • Annunziata CM, Davis RE, Demchenko Y et al (2007) Frequent engagement of the classical and alternative NF-κB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 12:115–130

    CAS  PubMed Central  PubMed  Google Scholar 

  • Annunziata CM, Hernandez L, Davis RE et al (2011) A mechanistic rationale for MEK inhibitor therapy in myeloma based on blockade of MAF oncogene expression. Blood 117:2396–2404

    CAS  PubMed  Google Scholar 

  • Arnott CH, Scott KA, Moore RJ et al (2004) Expression of both TNF-α receptor subtypes is essential for optimal skin tumour development. Oncogene 23:1902–1910

    CAS  PubMed  Google Scholar 

  • Azab AK, Azab F, Blotta S et al (2009) RhoA and Rac1 GTPases play major and differential roles in stromal cell-derived factor-1-induced cell adhesion and chemotaxis in multiple myeloma. Blood 114:619–629

    CAS  PubMed  Google Scholar 

  • Badr G, Lefevre EA, Mohany M (2011) Thymoquinone inhibits the CXCL12-induced chemotaxis of multiple myeloma cells and increases their susceptibility to Fas-mediated apoptosis. PLoS ONE 6:e23741

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bai QX, Zhang XY (2012) Curcumin enhances cytotoxic effects of bortezomib in human multiple myeloma H929 cells: potential roles of NF-kappaB/JNK. Int J Mol Sci 13:4831–4838

    CAS  PubMed Central  PubMed  Google Scholar 

  • Balkwill F (2006) TNF-α in promotion and progression of cancer. Cancer Metastasis Rev 25:409–416

    CAS  PubMed  Google Scholar 

  • Barrera LN, Rushworth SA, Bowles KM et al (2012) Bortezomib induces heme oxygenase-1 expression in multiple myeloma. Cell Cycle (Georgetown, Tex.) 11:2248–2252

    Google Scholar 

  • Barut BA, Zon LI, Cochran MK et al (1992) Role of interleukin 6 in the growth of myeloma-derived cell lines. Leuk Res 16:951–959

    CAS  PubMed  Google Scholar 

  • Bataille R, Jourdan M, Zhang XG et al (1989) Serum levels of interleukin 6, a potent myeloma cell growth factor, as a reflect of disease severity in plasma cell dyscrasias. J Clin Investig 84:2008–2011

    CAS  PubMed  Google Scholar 

  • Baud V, Karin M (2009) Is NF-kappaB a good target for cancer therapy? Hopes and pitfalls. Nat Rev Drug Discov 8:33–40

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beg AA, Baldwin AS Jr (1993) The I kappa B proteins: multifunctional regulators of Rel/NF-kappa B transcription factors. Genes Dev 7:2064–2070

    CAS  PubMed  Google Scholar 

  • Ben-Neriah Y, Karin M (2011) Inflammation meets cancer, with NF-kappaB as the matchmaker. Nat Immunol 12:715–723

    CAS  PubMed  Google Scholar 

  • Berenson JR, Ma HM, Vescio R (2001) The role of nuclear factor-κB in the biology and treatment of multiple myeloma. Semin Oncol 28:626–633

    CAS  PubMed  Google Scholar 

  • Bhardwaj A, Sethi G, Vadhan-Raj S et al (2007) Resveratrol inhibits proliferation, induces apoptosis, and overcomes chemoresistance through down-regulation of STAT3 and nuclear factor-kappaB-regulated antiapoptotic and cell survival gene products in human multiple myeloma cells. Blood 109:2293–2302

    CAS  PubMed  Google Scholar 

  • Bharti AC, Donato N, Aggarwal BB (2003a) Curcumin (diferuloylmethane) inhibits constitutive and IL-6-inducible STAT3 phosphorylation in human multiple myeloma cells. J Immunol 171:3863–3871

    CAS  PubMed  Google Scholar 

  • Bharti AC, Donato N, Singh S et al (2003b) Curcumin (diferuloylmethane) down-regulates the constitutive activation of nuclear factor-kappa B and IkappaBalpha kinase in human multiple myeloma cells, leading to suppression of proliferation and induction of apoptosis. Blood 101:1053–1062

    CAS  PubMed  Google Scholar 

  • Bharti AC, Shishodia S, Reuben JM et al (2004) Nuclear factor-κB and STAT3 are constitutively active in CD138 + cells derived from multiple myeloma patients, and suppression of these transcription factors leads to apoptosis. Blood 103:3175–3184

    CAS  PubMed  Google Scholar 

  • Bhutani M, Pathak AK, Nair AS et al (2007) Capsaicin is a novel blocker of constitutive and interleukin-6-inducible STAT3 activation. Clin Cancer Res 13:3024–3032

    CAS  PubMed  Google Scholar 

  • Boissy P, Andersen TL, Abdallah BM et al (2005) Resveratrol inhibits myeloma cell growth, prevents osteoclast formation, and promotes osteoblast differentiation. Cancer Res 65:9943–9952

    CAS  PubMed  Google Scholar 

  • Bommert K, Bargou RC, Stuhmer T (2006) Signalling and survival pathways in multiple myeloma. Eur J Cancer (Oxford, England: 1990) 42:1574–1580

    Google Scholar 

  • Borset M, Waage A, Brekke OL et al (1994) TNF and IL-6 are potent growth factors for OH-2, a novel human myeloma cell line. Eur J Haematol 53:31–37

    CAS  PubMed  Google Scholar 

  • Bottaro DP, Rubin JS, Faletto DL et al (1991) Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science (New York, NY) 251:802–804

  • Buckle CH, De Leenheer E, Lawson MA et al (2012) Soluble rank ligand produced by myeloma cells causes generalised bone loss in multiple myeloma. PLoS ONE 7:e41127

    CAS  PubMed Central  PubMed  Google Scholar 

  • Catlett-Falcone R, Landowski TH, Oshiro MM et al (1999) Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 10:105–115

    CAS  PubMed  Google Scholar 

  • Chanan-Khan AA (2004) Bcl-2 antisense therapy in multiple myeloma. Oncology (Williston Park, NY) 18:21–24

    Google Scholar 

  • Chatterjee M, Hönemann D, Lentzsch S et al (2002) In the presence of bone marrow stromal cells human multiple myeloma cells become independent of the IL-6/gp130/STAT3 pathway. Blood 100:3311–3318

    CAS  PubMed  Google Scholar 

  • Chatterjee M, Andrulis M, Stuhmer T et al (2012) The PI3K/Akt signalling pathway regulates the expression of Hsp70, which critically contributes to Hsp90-chaperone function and tumor cell survival in multiple myeloma. Haematologica. doi:10.3324/haematol.2012.066175

  • Chaturvedi MM, Sung B, Yadav VR et al (2011) NF-kappaB addiction and its role in cancer: ‘one size does not fit all’. Oncogene 30:1615–1630

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chauhan D, Singh AV, Ciccarelli B et al (2010) Combination of novel proteasome inhibitor NPI-0052 and lenalidomide trigger in vitro and in vivo synergistic cytotoxicity in multiple myeloma. Blood 115:834–845

    CAS  PubMed  Google Scholar 

  • Che Y, Hou S, Kang Z et al (2009) Serenoa repens induces growth arrest and apoptosis of human multiple myeloma cells via inactivation of STAT 3 signaling. Oncol Rep 22:377–383

    CAS  PubMed  Google Scholar 

  • Chim CS, Fung TK, Cheung WC et al (2004) SOCS1 and SHP1 hypermethylation in multiple myeloma: implications for epigenetic activation of the Jak/STAT pathway. Blood 103:4630–4635

    CAS  PubMed  Google Scholar 

  • Colucci S, Brunetti G, Oranger A et al (2011) Myeloma cells suppress osteoblasts through sclerostin secretion. Blood Cancer J 1:e27

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cortez M, Carmo LS, Rogero MM et al (2012) A high-fat diet increases IL-1, IL-6, and TNF-alpha production by increasing NF-kappaB and attenuating PPAR-gamma expression in bone marrow mesenchymal stem cells. Inflammation 36(2):379–386

    Google Scholar 

  • Croucher PI, Shipman CM, Lippitt J et al (2001) Osteoprotegerin inhibits the development of osteolytic bone disease in multiple myeloma. Blood 98:3534–3540

    CAS  PubMed  Google Scholar 

  • Cui G, Shu W, Wu Q et al (2009) Effect of Gambogic acid on the regulation of hERG channel in K562 cells in vitro. Journal of Huazhong University of Science and Technology. Medical sciences = Hua zhong ke ji da xue xue bao. Yi xue Ying De wen ban = Huazhong keji daxue xuebao. Yixue Yingdewen ban 29:540–545

    Google Scholar 

  • Daoussis D, Andonopoulos AP (2011) The emerging role of Dickkopf-1 in bone biology: is it the main switch controlling bone and joint remodeling? Semin Arthritis Rheum 41:170–177

    CAS  PubMed  Google Scholar 

  • Darnell Jr JE, Kerr IM, Stark GR (1994) Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science (New York, NY) 264:1415–1421

  • Davies C, Tournier C (2012) Exploring the function of the JNK (c-Jun N-terminal kinase) signalling pathway in physiological and pathological processes to design novel therapeutic strategies. Biochem Soc Trans 40:85

    CAS  PubMed  Google Scholar 

  • de Nigris F, Schiano C, Infante T et al (2012) CXCR4 inhibitors: tumor vasculature and therapeutic challenges. Recent Pat Anti-Cancer Drug Discov 7:251–264

    Google Scholar 

  • de Rooy DP, Yeremenko NG, Wilson AG et al (2012) Genetic studies on components of the Wnt signalling pathway and the severity of joint destruction in rheumatoid arthritis. Ann Rheum Dis 72(5):769–775

    Google Scholar 

  • Demchenko YN, Kuehl WM (2010) A critical role for the NFkB pathway in multiple myeloma. Oncotarget 1:59–68

    PubMed Central  PubMed  Google Scholar 

  • Demchenko YN, Glebov OK, Zingone A et al (2010) Classical and/or alternative NF-κB pathway activation in multiple myeloma. Blood 115:3541–3552

    CAS  PubMed  Google Scholar 

  • Derksen PW, de Gorter DJ, Meijer HP et al (2003) The hepatocyte growth factor/Met pathway controls proliferation and apoptosis in multiple myeloma. Leukemia 17:764–774

    CAS  PubMed  Google Scholar 

  • Dreyer C, Krey G, Keller H et al (1992) Control of the peroxisomal beta-oxidation pathway by a novel family of nuclear hormone receptors. Cell 68:879–887

    CAS  PubMed  Google Scholar 

  • Dun X, Jiang H, Zou J et al (2010) Differential expression of DKK-1 binding receptors on stromal cells and myeloma cells results in their distinct response to secreted DKK-1 in myeloma. Mol Cancer 9:247

    PubMed Central  PubMed  Google Scholar 

  • Eferl R, Wagner EF (2003) AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer 3:859–868

    CAS  PubMed  Google Scholar 

  • Farrugia AN, Atkins GJ, To LB et al (2003) Receptor activator of nuclear factor-kappaB ligand expression by human myeloma cells mediates osteoclast formation in vitro and correlates with bone destruction in vivo. Cancer Res 63:5438–5445

    CAS  PubMed  Google Scholar 

  • Feinman R, Koury J, Thames M et al (1999) Role of NF-κB in the rescue of multiple myeloma cells from glucocorticoid-induced apoptosis by bcl-2. Blood 93:3044–3052

    CAS  PubMed  Google Scholar 

  • Fowler JA, Mundy GR, Lwin ST et al (2012) Bone marrow stromal cells create a permissive microenvironment for myeloma development: a new stromal role for Wnt inhibitor Dkk1. Cancer Res 72:2183–2189

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fragioudaki M, Boula A, Tsirakis G et al (2012) B cell-activating factor: its clinical significance in multiple myeloma patients. Ann Hematol 91:1413–1418

    CAS  PubMed  Google Scholar 

  • Fuchs DA, Johnson RK (1978) Cytologic evidence that taxol, an antineoplastic agent from Taxus brevifolia, acts as a mitotic spindle poison. Cancer Treat Rep 62:1219–1222

    CAS  PubMed  Google Scholar 

  • Fuchs SY, Adler V, Pincus MR et al (1998) MEKK1/JNK signaling stabilizes and activates p53. Proc Natl Acad Sci USA 95:10541–10546

    CAS  PubMed  Google Scholar 

  • Galm O, Yoshikawa H, Esteller M et al (2003) SOCS-1, a negative regulator of cytokine signaling, is frequently silenced by methylation in multiple myeloma. Blood 101:2784–2788

    CAS  PubMed  Google Scholar 

  • Gardam S, Beyaert R (2011) The kinase NIK as a therapeutic target in multiple myeloma. Expert Opin Ther Targets 15:207–218

    CAS  PubMed  Google Scholar 

  • Gavriatopoulou M, Dimopoulos MA, Christoulas D et al (2009) Dickkopf-1: a suitable target for the management of myeloma bone disease. Expert Opin Ther Targets 13:839–848

    CAS  PubMed  Google Scholar 

  • Gera J, Lichtenstein A (2011) The mammalian target of rapamycin pathway as a therapeutic target in multiple myeloma. Leuk Lymphoma 52:1857–1866

    CAS  PubMed  Google Scholar 

  • Giordano S, Ponzetto C, Di Renzo MF et al (1989) Tyrosine kinase receptor indistinguishable from the c-met protein. Nature 339:155–156

    CAS  PubMed  Google Scholar 

  • Giuliani N, Bataille R, Mancini C et al (2001) Myeloma cells induce imbalance in the osteoprotegerin/osteoprotegerin ligand system in the human bone marrow environment. Blood 98:3527–3533

    CAS  PubMed  Google Scholar 

  • Giuliani N, Colla S, Sala R et al (2002) Human myeloma cells stimulate the receptor activator of nuclear factor-kappa B ligand (RANKL) in T lymphocytes: a potential role in multiple myeloma bone disease. Blood 100:4615–4621

    CAS  PubMed  Google Scholar 

  • Giuliani N, Lunghi P, Morandi F et al (2004) Downmodulation of ERK protein kinase activity inhibits VEGF secretion by human myeloma cells and myeloma-induced angiogenesis. Leukemia 18:628–635

    CAS  PubMed  Google Scholar 

  • Goel A, Jhurani S, Aggarwal BB (2008) Multi-targeted therapy by curcumin: how spicy is it? Mol Nutr Food Res 52:1010–1030

    CAS  PubMed  Google Scholar 

  • Golombick T, Diamond TH, Badmaev V et al (2009) The potential role of curcumin in patients with monoclonal gammopathy of undefined significance—its effect on paraproteinemia and the urinary N-telopeptide of type I collagen bone turnover marker. Clin Cancer Res 15:5917–5922

    CAS  PubMed  Google Scholar 

  • Gu H, Rao S, Zhao J et al (2009) Gambogic acid reduced bcl-2 expression via p53 in human breast MCF-7 cancer cells. J Cancer Res Clin Oncol 135:1777–1782

    CAS  PubMed  Google Scholar 

  • Guo Y, Xu F, Lu T et al (2012) Interleukin-6 signaling pathway in targeted therapy for cancer. Cancer Treat Rev 38:904–910

    CAS  PubMed  Google Scholar 

  • Gupta SC, Sundaram C, Reuter S et al (2010) Inhibiting NF-kappaB activation by small molecules as a therapeutic strategy. Biochim Biophys Acta 1799:775–787

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gupta SC, Kim JH, Kannappan R et al (2011) Role of nuclear factor kappaB-mediated inflammatory pathways in cancer-related symptoms and their regulation by nutritional agents. Exp Biol Med (Maywood, NJ) 236:658–671

    Google Scholar 

  • Gupta SC, Patchva S, Aggarwal BB (2012) Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J 15(1):195–218

    Google Scholar 

  • Haftchenary S, Avadisian M, Gunning PT (2011) Inhibiting aberrant Stat3 function with molecular therapeutics: a progress report. Anticancer Drugs 22:115–127

    CAS  PubMed  Google Scholar 

  • Harikumar KB, Aggarwal BB (2008) Resveratrol: a multitargeted agent for age-associated chronic diseases. Cell cycle (Georgetown, Tex.) 7:1020–1035

    Google Scholar 

  • Harvey RD, Lonial S (2007) PI3 kinase/AKT pathway as a therapeutic target in multiple myeloma. Future Oncol 3:639–647

    CAS  PubMed  Google Scholar 

  • Heath DJ, Vanderkerken K, Cheng X et al (2007) An osteoprotegerin-like peptidomimetic inhibits osteoclastic bone resorption and osteolytic bone disease in myeloma. Cancer Res 67:202–208

    CAS  PubMed  Google Scholar 

  • Heider U, Kaiser M, Mieth M et al (2009) Serum concentrations of DKK-1 decrease in patients with multiple myeloma responding to anti-myeloma treatment. Eur J Haematol 82:31–38

    CAS  PubMed  Google Scholar 

  • Hideshima T, Anderson KC (2007) Preclinical studies of novel targeted therapies. Hematol Oncol Clin N Am 21:1071–1091, viii–ix

    Google Scholar 

  • Hideshima T, Chauhan D, Schlossman R et al (2001a) The role of tumor necrosis factor α in the pathophysiology of human multiple myeloma: therapeutic applications. Oncogene 20:4519–4527

    CAS  PubMed  Google Scholar 

  • Hideshima T, Nakamura N, Chauhan D et al (2001b) Biologic sequelae of interleukin-6 induced PI3-K/Akt signaling in multiple myeloma. Oncogene 20:5991–6000

    CAS  PubMed  Google Scholar 

  • Hideshima T, Chauhan D, Hayashi T et al (2002) The biological sequelae of stromal cell-derived factor-1alpha in multiple myeloma. Mol Cancer Ther 1:539–544

    CAS  PubMed  Google Scholar 

  • Hilbert DM, Kopf M, Mock BA et al (1995) Interleukin 6 is essential for in vivo development of B lineage neoplasms. J Exp Med 182:243–248

    CAS  PubMed  Google Scholar 

  • Hirano T, Taga T, Nakano N (1985) Purification to homogeneity and characterization of human B-cell differentiation factor (BCDF or BSFp-2). Proc Natl Acad Sci USA 82:5490–5494

    CAS  PubMed  Google Scholar 

  • Hirano T, Ishihara K, Hibi M (2000) Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene 19:2548–2556

    CAS  PubMed  Google Scholar 

  • Hoang B, Benavides A, Shi Y et al (2012) The PP242 mammalian target of rapamycin (mTOR) inhibitor activates extracellular signal-regulated kinase (ERK) in multiple myeloma cells via a target of rapamycin complex 1 (TORC1)/eukaryotic translation initiation factor 4E (eIF-4E)/RAF pathway and activation is a mechanism of resistance. J Biol Chem 287:21796–21805

    CAS  PubMed  Google Scholar 

  • Hogan MC, Lee A, Solberg LA et al (2002) Unusual presentation of multiple myeloma with unilateral visual loss and numb chin syndrome in a young adult. Am J Hematol 70:55–59

    PubMed  Google Scholar 

  • Holt RU, Baykov V, Ro TB et al (2005) Human myeloma cells adhere to fibronectin in response to hepatocyte growth factor. Haematologica 90:479–488

    CAS  PubMed  Google Scholar 

  • Holt RU, Fagerli UM, Baykov V et al (2008) Hepatocyte growth factor promotes migration of human myeloma cells. Haematologica 93:619–622

    CAS  PubMed  Google Scholar 

  • Hov H, Holt RU, Ro TB et al (2004) A selective c-met inhibitor blocks an autocrine hepatocyte growth factor growth loop in ANBL-6 cells and prevents migration and adhesion of myeloma cells. Clin Cancer Res 10:6686–6694

    CAS  PubMed  Google Scholar 

  • Hu Y, Sun CY, Huang J et al (2007) Antimyeloma effects of resveratrol through inhibition of angiogenesis. Chin Med J 120:1672–1677

    CAS  PubMed  Google Scholar 

  • Ikeda H, Hideshima T, Fulciniti M et al (2010) PI3K/p110{delta} is a novel therapeutic target in multiple myeloma. Blood 116:1460–1468

    CAS  PubMed  Google Scholar 

  • Jöhrer K, Janke K, Krugmann J et al (2004) Transendothelial migration of myeloma cells is increased by tumor necrosis factor (TNF)-α via TNF receptor 2 and autocrine up-regulation of MCP-1. Clin Cancer Res 10:1901–1910

    PubMed  Google Scholar 

  • Jost E, Gezer D, Wilop S et al (2009) Epigenetic dysregulation of secreted Frizzled-related proteins in multiple myeloma. Cancer Lett 281:24–31

    CAS  PubMed  Google Scholar 

  • Kamada Y, Sakata-Yanagimoto M, Sanada M et al (2012) Identification of unbalanced genome copy number abnormalities in patients with multiple myeloma by single-nucleotide polymorphism genotyping microarray analysis. Int J Hematol 96:492–500

    CAS  PubMed  Google Scholar 

  • Kang MIL, Baker AR, Dextras CR et al (2012) Targeting of noncanonical Wnt5a signaling by AP-1 blocker dominant-negative Jun when it inhibits skin carcinogenesis. Genes Cancer 3:37–50

    PubMed Central  PubMed  Google Scholar 

  • Kannaiyan R, Hay HS, Rajendran P et al (2011a) Celastrol inhibits proliferation and induces chemosensitization through downregulation of NF-kappaB and STAT3 regulated gene products in multiple myeloma cells. Br J Pharmacol 164(5):1506–1521

    Google Scholar 

  • Kannaiyan R, Manu KA, Chen L et al (2011b) Celastrol inhibits tumor cell proliferation and promotes apoptosis through the activation of c-Jun N-terminal kinase and suppression of PI3K/Akt signaling pathways. Apoptosis 16(10):1028–1041

    Google Scholar 

  • Kannaiyan R, Shanmugam MK, Sethi G (2011c) Molecular targets of celastrol derived from thunder of god vine: potential role in the treatment of inflammatory disorders and cancer. Cancer Lett 303:9–20

    CAS  PubMed  Google Scholar 

  • Kannaiyan R, Surana R, Shin EM et al (2011d) Targeted inhibition of multiple proinflammatory signalling pathways for the prevention and treatment of multiple myeloma. Multiple Myeloma Overv 93–128

  • Karin M (2008) The IkappaB kinase—a bridge between inflammation and cancer. Cell Res 18:334–342

    CAS  PubMed  Google Scholar 

  • Kastrinakis NG, Gorgoulis VG, Foukas PG et al (2000) Molecular aspects of multiple myeloma. Ann Oncol Off J Eur Soc Med Oncol ESMO 11:1217–1228

    CAS  Google Scholar 

  • Keats JJ, Fonseca R, Chesi M et al (2007) Promiscuous mutations activate the noncanonical NF-κB pathway in multiple myeloma. Cancer Cell 12:131–144

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim CS, Park WH, Park JY et al (2004) Capsaicin, a spicy component of hot pepper, induces apoptosis by activation of the peroxisome proliferator-activated receptor gamma in HT-29 human colon cancer cells. J Med Food 7:267–273

    CAS  PubMed  Google Scholar 

  • Kim HJ, Kim SM, Park KR et al (2011a) Decursin chemosensitizes human multiple myeloma cells through inhibition of STAT3 signaling pathway. Cancer Lett 301:29–37

    CAS  PubMed  Google Scholar 

  • Kim SH, Lee JC, Ahn KS et al (2011b) Signal transducer and activator of transcription 3 pathway mediates genipin-induced apoptosis in U266 multiple myeloma cells. J Cell Biochem 112:1552–1562

    PubMed  Google Scholar 

  • Klaus A, Birchmeier W (2008) Wnt signalling and its impact on development and cancer. Nat Rev Cancer 8:387–398

    CAS  PubMed  Google Scholar 

  • Knight B, Yeoh GCT, Husk KL et al (2000) Impaired preneoplastic changes and liver tumor formation in tumor necrosis factor receptor type 1 knockout mice. J Exp Med 192:1809–1818

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kobayashi T, Kuroda J, Ashihara E et al (2010) Galectin-9 exhibits anti-myeloma activity through JNK and p38 MAP kinase pathways. Leukemia 24:843–850

    CAS  PubMed  Google Scholar 

  • Kocemba KA, Groen RW, van Andel H et al (2012) Transcriptional silencing of the Wnt-antagonist DKK1 by promoter methylation is associated with enhanced Wnt signaling in advanced multiple myeloma. PLoS ONE 7:e30359

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kudo C, Yamakoshi H, Sato A et al (2011) Novel curcumin analogs, GO-Y030 and GO-Y078, are multi-targeted agents with enhanced abilities for multiple myeloma. Anticancer Res 31:3719–3726

    CAS  PubMed  Google Scholar 

  • Kuhn H, Thiele BJ (1999) The diversity of the lipoxygenase family. Many sequence data but little information on biological significance. FEBS Lett 449:7–11

    CAS  PubMed  Google Scholar 

  • Kumar L, Cyriac SL, Tejomurtula TV et al (2012) Autologous stem cell transplantation for multiple myeloma: identification of prognostic factors. Clin Lymphoma Myeloma Leuk 13(1):32–41

    Google Scholar 

  • Kunnumakkara AB, Anand P, Aggarwal BB (2008) Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett 269:199–225

    CAS  PubMed  Google Scholar 

  • Kunnumakkara AB, Nair AS, Sung B et al (2009) Boswellic acid blocks signal transducers and activators of transcription 3 signaling, proliferation, and survival of multiple myeloma via the protein tyrosine phosphatase SHP-1. Mol Cancer Res 7:118–128

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kyrtsonis MC, Dedoussis G, Zervas C et al (1996) Soluble interleukin-6 receptor (sIL-6R), a new prognostic factor in multiple myeloma. Br J Haematol 93:398–400

    CAS  PubMed  Google Scholar 

  • Lacey DL, Timms E, Tan HL et al (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165–176

    CAS  PubMed  Google Scholar 

  • Lentzsch S, Chatterjee M, Gries M et al (2004) PI3-K/AKT/FKHR and MAPK signaling cascades are redundantly stimulated by a variety of cytokines and contribute independently to proliferation and survival of multiple myeloma cells. Leukemia 18:1883–1890

    CAS  PubMed  Google Scholar 

  • Levy DE, Lee CK (2002) What does Stat3 do? J Clin Invest 109:1143–1148

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li F, Sethi G (2010) Targeting transcription factor NF-kappaB to overcome chemoresistance and radioresistance in cancer therapy. Biochim Biophys Acta 1805:167–180

    CAS  PubMed  Google Scholar 

  • Li QB, You Y, Chen ZC et al (2006) Role of Baicalein in the regulation of proliferation and apoptosis in human myeloma RPMI8226 cells. Chin Med J 119:948–952

    CAS  PubMed  Google Scholar 

  • Li F, Rajendran P, Sethi G (2010a) Thymoquinone inhibits proliferation, induces apoptosis and chemosensitizes human multiple myeloma cells through suppression of signal transducer and activator of transcription 3 activation pathway. Br J Pharmacol 161:541–554

    CAS  PubMed  Google Scholar 

  • Li F, Rajendran P, Sethi G (2010b) Thymoquinone inhibits proliferation, induces apoptosis and chemosensitizes human multiple myeloma cells through suppression of signal transducer and activator of transcription 3 activation pathway. Br J Pharmacol 161:541–554

    CAS  PubMed  Google Scholar 

  • Li W, Li J, Su C et al (2010c) New targets of PS-341: BAFF and APRIL. Med Oncol 27:439–445

    CAS  PubMed  Google Scholar 

  • Liu S, Ma Z, Cai H et al (2010) Inhibitory effect of baicalein on IL-6-mediated signaling cascades in human myeloma cells. Eur J Haematol 84:137–144

    CAS  PubMed  Google Scholar 

  • Liu H, Tamashiro S, Baritaki S et al (2012) TRAF6 activation in multiple myeloma: a potential therapeutic target. Clin Lymphoma Myeloma Leuk 12:155–163

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ludek P, Hana S, Zdenek A et al (2010) Treatment response to bortezomib in multiple myeloma correlates with plasma hepatocyte growth factor concentration and bone marrow thrombospondin concentration. Eur J Haematol 84:332–336

    CAS  PubMed  Google Scholar 

  • Ma J, Wang S, Zhao M et al (2011) Therapeutic potential of cladribine in combination with STAT3 inhibitor against multiple myeloma. BMC Cancer 11:255

    Google Scholar 

  • Maeda K, Kobayashi Y, Udagawa N et al (2012) Wnt5a-Ror2 signaling between osteoblast-lineage cells and osteoclast precursors enhances osteoclastogenesis. Nat Med 18:405–412

    CAS  PubMed  Google Scholar 

  • Mahtouk K, Tjin EP, Spaargaren M et al (2010) The HGF/MET pathway as target for the treatment of multiple myeloma and B-cell lymphomas. Biochim Biophys Acta 1806:208–219

    CAS  PubMed  Google Scholar 

  • Maiso P, Liu Y, Morgan B et al (2011) Defining the role of TORC1/2 in multiple myeloma. Blood 118:6860–6870

    CAS  PubMed  Google Scholar 

  • Manier S, Sacco A, Leleu X et al (2012) Bone marrow microenvironment in multiple myeloma progression. J Biomed Biotechnol. doi:10.1155/2012/157496

  • Melton LJ 3rd, Rajkumar SV, Khosla S et al (2004) Fracture risk in monoclonal gammopathy of undetermined significance. J Bone Miner Res Off J Am Soc Bone Miner Res 19:25–30

    Google Scholar 

  • Melton LJ 3rd, Kyle RA, Achenbach SJ et al (2005) Fracture risk with multiple myeloma: a population-based study. J Bone Miner Res Off J Am Soc Bone Miner Res 20:487–493

    Google Scholar 

  • Menu E, Asosingh K, Indraccolo S et al (2006) The involvement of stromal derived factor 1α in homing and progression of multiple myeloma in the 5TMM model. Haematologica 91:605–612

    CAS  PubMed  Google Scholar 

  • Ming J, Jiang G, Zhang Q et al (2012) Interleukin-7 up-regulates cyclin D1 via activator protein-1 to promote proliferation of cell in lung cancer. Cancer Immunol Immunother CII 61:79–88

    CAS  Google Scholar 

  • Moller C, Stromberg T, Juremalm M et al (2003) Expression and function of chemokine receptors in human multiple myeloma. Leukemia 17:203–210

    CAS  PubMed  Google Scholar 

  • Moore RJ, Owens DM, Stamp G et al (1999) Mice deficient in tumor necrosis factor-α are resistant to skin carcinogenesis. Nat Med 5:828–831

    CAS  PubMed  Google Scholar 

  • Moreaux J, Legouffe E, Jourdan E et al (2004) BAFF and APRIL protect myeloma cells from apoptosis induced by interleukin 6 deprivation and dexamethasone. Blood 103:3148–3157

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moreaux J, Cremer FW, Reme T et al (2005) The level of TACI gene expression in myeloma cells is associated with a signature of microenvironment dependence versus a plasmablastic signature. Blood 106:1021–1030

    CAS  PubMed Central  PubMed  Google Scholar 

  • Muto A, Hori M, Sasaki Y et al (2007) Emodin has a cytotoxic activity against human multiple myeloma as a Janus-activated kinase 2 inhibitor. Mol Cancer Ther 6:987–994

    CAS  PubMed  Google Scholar 

  • Nakashima T, Kobayashi Y, Yamasaki S et al (2000) Protein expression and functional difference of membrane-bound and soluble receptor activator of NF-kappaB ligand: modulation of the expression by osteotropic factors and cytokines. Biochem Biophys Res Commun 275:768–775

    CAS  PubMed  Google Scholar 

  • Nishimoto N, Ogata A, Shima Y et al (1994) Oncostatin M, leukemia inhibitory factor, and interleukin 6 induce the proliferation of human plasmacytoma cells via the common signal transducer, GP130. J Exp Med 179:1343–1347

    CAS  PubMed  Google Scholar 

  • Novak AJ, Darce JR, Arendt BK et al (2004) Expression of BCMA, TACI, and BAFF-R in multiple myeloma: a mechanism for growth and survival. Blood 103:689–694

    CAS  PubMed  Google Scholar 

  • Otsuyama KI, Ma Z, Abroun S et al (2007) PPARbeta-mediated growth suppression of baicalein and dexamethasone in human myeloma cells. Leukemia 21:187–190

    CAS  PubMed  Google Scholar 

  • Oyajobi BO, Franchin G, Williams PJ et al (2003) Dual effects of macrophage inflammatory protein-1alpha on osteolysis and tumor burden in the murine 5TGM1 model of myeloma bone disease. Blood 102:311–319

    CAS  PubMed  Google Scholar 

  • Pandey MK, Bokyung S, Kwang SA et al (2009) Butein suppresses constitutive and inducible signal transducer and activator of transcription (stat) 3 activation and stat3-regulated gene products through the induction of a protein tyrosine phosphatase SHP-1. Mol Pharmacol 75:525–533

    CAS  PubMed  Google Scholar 

  • Pandey MK, Sung B, Aggarwal BB (2010) Betulinic acid suppresses STAT3 activation pathway through induction of protein tyrosine phosphatase SHP-1 in human multiple myeloma cells. Int J Cancer 127:282–292

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pang X, Yi Z, Zhang J et al (2010) Celastrol suppresses angiogenesis-mediated tumor growth through inhibition of AKT/mammalian target of rapamycin pathway. Cancer Res 70:1951–1959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Park S, Lee HJ, Jeong SJ et al (2011) Inhibition of JAK1/STAT3 signaling mediates compound K-induced apoptosis in human multiple myeloma U266 cells. Food Chem Toxicol 49:1367–1372

    CAS  PubMed  Google Scholar 

  • Pathak AK, Bhutani M, Nair AS et al (2007) Ursolic acid inhibits STAT3 activation pathway leading to suppression of proliferation and chemosensitization of human multiple myeloma cells. Mol Cancer Res 5:943–955

    CAS  PubMed  Google Scholar 

  • Pearse RN, Swendeman SL, Li Y et al (2005) A neurotrophin axis in myeloma: TrkB and BDNF promote tumor-cell survival. Blood 105:4429–4436

    CAS  PubMed  Google Scholar 

  • Pellegrino A, Vacca A, Scavelli C et al (2002) Chemokines and tumors. Recenti Prog Med 93:642–654

    PubMed  Google Scholar 

  • Pellegrino A, Antonaci F, Russo F et al (2004) CXCR3-binding chemokines in multiple myeloma. Cancer Lett 207:221–227

    CAS  PubMed  Google Scholar 

  • Pellegrino A, Ria R, Di Pietro G et al (2005) Bone marrow endothelial cells in multiple myeloma secrete CXC-chemokines that mediate interactions with plasma cells. Br J Haematol 129:248–256

    CAS  PubMed  Google Scholar 

  • Pelliniemi TT, Irjala K, Mattila K et al (1995) Immunoreactive interleukin-6 and acute phase proteins as prognostic factors in multiple myeloma. Blood 85:765–771

    CAS  PubMed  Google Scholar 

  • Peng J, Chen Y, Lin J et al (2011) Patrinia scabiosaefolia extract suppresses proliferation and promotes apoptosis by inhibiting the STAT3 pathway in human multiple myeloma cells. Mol Med Rep 4:313–318

    CAS  PubMed  Google Scholar 

  • Perry AS, O’Hurley G, Raheem OA et al (2012) Gene expression and epigenetic discovery screen reveal methylation of SFRP2 in prostate cancer. Int J Cancer. J Int du cancer 132(8):1771–1780

    Google Scholar 

  • Peterson TR, Laplante M, Thoreen CC et al (2009) DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 137:873–886

    CAS  PubMed Central  PubMed  Google Scholar 

  • Phromnoi K, Prasad S, Gupta SC et al (2011) Dihydroxypentamethoxyflavone down-regulates constitutive and inducible signal transducers and activators of transcription-3 through the induction of tyrosine phosphatase SHP-1. Mol Pharmacol 80:889–899

    CAS  PubMed  Google Scholar 

  • Pisha E, Chai H, Lee IS et al (1995) Discovery of betulinic acid as a selective inhibitor of human melanoma that functions by induction of apoptosis. Nat Med 1:1046–1051

    CAS  PubMed  Google Scholar 

  • Planelles L, Medema JP, Hahne M et al (2008) The expanding role of APRIL in cancer and immunity. Curr Mol Med 8:829–844

    CAS  PubMed  Google Scholar 

  • Podar K, Hideshima T, Chauhan D et al (2005) Targeting signalling pathways for the treatment of multiple myeloma. Expert Opin Ther Targets 9:359–381

    CAS  PubMed  Google Scholar 

  • Pour L, Svachova H, Adam Z et al (2010) Levels of angiogenic factors in patients with multiple myeloma correlate with treatment response. Ann Hematol 89:385–389

    CAS  PubMed  Google Scholar 

  • Prasad S, Ravindran J, Aggarwal BB (2010) NF-kappaB and cancer: how intimate is this relationship. Mol Cell Biochem 336:25–37

    CAS  PubMed Central  PubMed  Google Scholar 

  • Prasad S, Pandey MK, Yadav VR et al (2011) Gambogic acid inhibits STAT3 phosphorylation through activation of protein tyrosine phosphatase SHP-1: potential role in proliferation and apoptosis. Cancer Prev Res (Philadelphia, Pa.) 4:1084–1094

    Google Scholar 

  • Pulkki K, Pelliniemi TT, Rajamäki A et al (1996) Soluble interleukin-6 receptor as a prognostic factor in multiple myeloma. Br J Haematol 92:370–374

    CAS  PubMed  Google Scholar 

  • Pusic I, DiPersio JF (2010) Update on clinical experience with AMD3100, an SDF-1/CXCL12-CXCR4 inhibitor, in mobilization of hematopoietic stem and progenitor cells. Curr Opin Hematol 17:319–326

    CAS  PubMed  Google Scholar 

  • Puthier D, Bataille R, Amiot M (1999a) IL-6 up-regulates Mcl-1 in human myeloma cells through JAK/STAT rather than Ras/MAP kinase pathway. Eur J Immunol 29:3945–3950

    CAS  PubMed  Google Scholar 

  • Puthier D, Derenne S, Barille S et al (1999b) Mcl-1 and Bcl-X(L) are co-regulated by IL-6 in human myeloma cells. Br J Haematol 107:392–395

    CAS  PubMed  Google Scholar 

  • Quinn J, Glassford J, Percy L et al (2011) APRIL promotes cell-cycle progression in primary multiple myeloma cells: influence of D-type cyclin group and translocation status. Blood 117:890–901

    CAS  PubMed  Google Scholar 

  • Quintanilla-Martinez L, Kremer M, Specht K et al (2003) Analysis of signal transducer and activator of transcription 3 (Stat 3) pathway in multiple myeloma: Stat 3 activation and cyclin D1 dysregulation are mutually exclusive events. Am J Pathol 162:1449–1461

    CAS  PubMed  Google Scholar 

  • Raab MS, Podar K, Breitkreutz I et al (2009) Multiple myeloma. Lancet 374:324–339

    PubMed  Google Scholar 

  • Raje N, Kumar S, Hideshima T et al (2004) Combination of the mTOR inhibitor rapamycin and CC-5013 has synergistic activity in multiple myeloma. Blood 104:4188–4193

    CAS  PubMed  Google Scholar 

  • Ralhan R, Pandey MK, Aggarwal BB (2009) Nuclear factor-kappa B links carcinogenic and chemopreventive agents. Frontiers Biosci 1:45–60

    Google Scholar 

  • Reuter S, Eifes S, Dicato M et al (2008) Modulation of anti-apoptotic and survival pathways by curcumin as a strategy to induce apoptosis in cancer cells. Biochem Pharmacol 76:1340–1351

    CAS  PubMed  Google Scholar 

  • Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434:843–850

    CAS  PubMed  Google Scholar 

  • Romagnoli M, Desplanques G, Maiga S et al (2007) Canonical nuclear factor kappaB pathway inhibition blocks myeloma cell growth and induces apoptosis in strong synergy with TRAIL. Clin Cancer Res 13:6010–6018

    CAS  PubMed  Google Scholar 

  • Rong JJ, Hu R, Song XM et al (2010) Gambogic acid triggers DNA damage signaling that induces p53/p21(Waf1/CIP1) activation through the ATR-Chk1 pathway. Cancer Lett 296:55–64

    CAS  PubMed  Google Scholar 

  • Rossi M, Di Martino MT, Morelli E et al (2012) Molecular targets for the treatment of multiple myeloma. Curr Cancer Drug Targets 12:757–767

    CAS  PubMed  Google Scholar 

  • Rzeski W, Stepulak A, Szymanski M et al (2006) Betulinic acid decreases expression of bcl-2 and cyclin D1, inhibits proliferation, migration and induces apoptosis in cancer cells. Naunyn-Schmiedeberg’s Arch Pharmacol 374:11–20

    CAS  Google Scholar 

  • Sagawa M, Nakazato T, Uchida H et al (2008) Cantharidin induces apoptosis of human multiple myeloma cells via inhibition of the JAK/STAT pathway. Cancer Sci 99:1820–1826

    CAS  PubMed  Google Scholar 

  • Saha MN, Jiang H, Yang Y et al (2012) Targeting p53 via JNK pathway: a novel role of RITA for apoptotic signaling in multiple myeloma. PLoS ONE 7:e30215

    CAS  PubMed Central  PubMed  Google Scholar 

  • Salem M, Elbaz O, Zahran M et al (2000) Identification of predictors of disease status and progression in patients with myeloma (MM). Hematology 5:41–45

    PubMed  Google Scholar 

  • Seidel C, Hjertner O, Abildgaard N et al (2001) Serum osteoprotegerin levels are reduced in patients with multiple myeloma with lytic bone disease. Blood 98:2269–2271

    CAS  PubMed  Google Scholar 

  • Seidel C, Lenhoff S, Brabrand S et al (2002) Hepatocyte growth factor in myeloma patients treated with high-dose chemotherapy. Br J Haematol 119:672–676

    CAS  PubMed  Google Scholar 

  • Sethi G, Aggarwal BB (2007) Mending the bones with natural products. Chem Biol 14:738–740

    CAS  PubMed  Google Scholar 

  • Sethi G, Tergaonkar V (2009) Potential pharmacological control of the NF-κB pathway. Trends Pharmacol Sci 30:313–321

    CAS  PubMed  Google Scholar 

  • Sethi G, Ahn KS, Pandey MK et al (2007) Celastrol, a novel triterpene, potentiates TNF-induced apoptosis and suppresses invasion of tumor cells by inhibiting NF-kappaB-regulated gene products and TAK1-mediated NF-kappaB activation. Blood 109:2727–2735

    CAS  PubMed  Google Scholar 

  • Sethi G, Sung B, Aggarwal BB (2008a) Nuclear factor-κB activation: from bench to bedside. Exp Biol Med 233:21–31

    CAS  Google Scholar 

  • Sethi G, Sung B, Aggarwal BB (2008b) TNF: a master switch for inflammation to cancer. Frontiers Biosci J Virtual Libr 13:5094–5107

    CAS  Google Scholar 

  • Sethi G, Sung B, Kunnumakkara AB et al (2009) Targeting TNF for treatment of cancer and autoimmunity. Adv Exp Med Biol 647:37–51

    CAS  PubMed  Google Scholar 

  • Sethi G, Shanmugam MK, Ramachandran L et al (2012) Multifaceted link between cancer and inflammation. Biosci Rep 32:1–15

    CAS  PubMed  Google Scholar 

  • Sezer O, Jakob C, Eucker J et al (2001) Serum levels of the angiogenic cytokines basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) in multiple myeloma. Eur J Haematol 66:83–88

    CAS  PubMed  Google Scholar 

  • Shakibaei M, Harikumar KB, Aggarwal BB (2009) Resveratrol addiction: to die or not to die. Mol Nutr Food Res 53:115–128

    CAS  PubMed  Google Scholar 

  • Shanmugam MK, Kannaiyan R, Sethi G (2011) Targeting cell signaling and apoptotic pathways by dietary agents: role in the prevention and treatment of cancer. Nutr Cancer 63:161–173

    CAS  PubMed  Google Scholar 

  • Shaulian E, Karin M (2002) AP-1 as a regulator of cell life and death. Nat Cell Biol 4:E131–E136

    CAS  PubMed  Google Scholar 

  • Shen X, Zhu W, Zhang X et al (2011) A role of both NF-kappaB pathways in expression and transcription regulation of BAFF-R gene in multiple myeloma cells. Mol Cell Biochem 357:21–30

    CAS  PubMed  Google Scholar 

  • Shi Y, Yan H, Frost P et al (2005) Mammalian target of rapamycin inhibitors activate the AKT kinase in multiple myeloma cells by up-regulating the insulin-like growth factor receptor/insulin receptor substrate-1/phosphatidylinositol 3-kinase cascade. Mol Cancer Ther 4:1533–1540

    CAS  PubMed  Google Scholar 

  • Shipman CM, Croucher PI (2003) Osteoprotegerin is a soluble decoy receptor for tumor necrosis factor-related apoptosis-inducing ligand/Apo2 ligand and can function as a paracrine survival factor for human myeloma cells. Cancer Res 63:912–916

    CAS  PubMed  Google Scholar 

  • Song L, Li Y, Sun Y et al (2002) Mcl-1 mediates cytokine deprivation induced apoptosis of human myeloma cell line XG-7. Chin Med J 115:1241–1243

    CAS  PubMed  Google Scholar 

  • Spets H, Strömberg T, Georgii-Hemming P et al (2002) Expression of the bcl-2 family of pro- and anti-apoptotic genes in multiple myeloma and normal plasma cells: regulation during interleukin-6 (IL-6)-induced growth and survival. Eur J Haematol 69:76–89

    CAS  PubMed  Google Scholar 

  • Stasi R, Brunetti M, Parma A et al (1998) The prognostic value of soluble interleukin-6 receptor in patients with multiple myeloma. Cancer 82:1860–1866

    CAS  PubMed  Google Scholar 

  • Stelmach-Goldys A, Czarkowska-Paczek B (2012) Monoclonal gammopathy of undetermined significance—potential risk factor of multiple myeloma. Przegl Lek 69:194–196

    PubMed  Google Scholar 

  • Sun CY, Hu Y, Guo T et al (2006) Resveratrol as a novel agent for treatment of multiple myeloma with matrix metalloproteinase inhibitory activity. Acta Pharmacol Sin 27:1447–1452

    CAS  PubMed  Google Scholar 

  • Sun CY, Hu Y, Huang J et al (2010) Brain-derived neurotrophic factor induces proliferation, migration, and VEGF secretion in human multiple myeloma cells via activation of MEK-ERK and PI3K/AKT signaling. Tumour Biol 31:121–128

    CAS  PubMed  Google Scholar 

  • Sundqvist A, Zieba A, Vasilaki E et al (2012) Specific interactions between Smad proteins and AP-1 components determine TGFβ-induced breast cancer cell invasion. Oncogene. doi:10.1038/onc.2012.370

  • Sung B, Kunnumakkara AB, Sethi G et al (2009) Curcumin circumvents chemoresistance in vitro and potentiates the effect of thalidomide and bortezomib against human multiple myeloma in nude mice model. Mol Cancer Ther 8:959–970

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sung B, Prasad S, Yadav VR et al (2012) Cancer cell signaling pathways targeted by spice-derived nutraceuticals. Nutr Cancer 64:173–197

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tai YT, Li XF, Breitkreutz I et al (2006) Role of B-cell-activating factor in adhesion and growth of human multiple myeloma cells in the bone marrow microenvironment. Cancer Res 66:6675–6682

    CAS  PubMed  Google Scholar 

  • Tai YT, Chang BY, Kong SY et al (2012) Bruton tyrosine kinase inhibition is a novel therapeutic strategy targeting tumor in the bone marrow microenvironment in multiple myeloma. Blood 120:1877–1887

    CAS  PubMed  Google Scholar 

  • Terpos E, Szydlo R, Apperley JF et al (2003) Soluble receptor activator of nuclear factor kappaB ligand-osteoprotegerin ratio predicts survival in multiple myeloma: proposal for a novel prognostic index. Blood 102:1064–1069

    CAS  PubMed  Google Scholar 

  • Terpos E, Politou M, Viniou N et al (2005) Significance of macrophage inflammatory protein-1 alpha (MIP-1alpha) in multiple myeloma. Leuk Lymphoma 46:1699–1707

    CAS  PubMed  Google Scholar 

  • Thavasu PW, Ganjoo RK, Maidment SA et al (1995) Multiple myeloma: an immunoclinical study of disease and response to treatment. Hematol Oncol 13:69–82

    CAS  PubMed  Google Scholar 

  • Thu YM, Richmond A (2010) NF-kappaB inducing kinase: a key regulator in the immune system and in cancer. Cytokine Growth Factor Rev 21:213–226

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tokoyoda K, Egawa T, Sugiyama T et al (2004) Cellular niches controlling B lymphocyte behavior within bone marrow during development. Immunity 20:707–718

    CAS  PubMed  Google Scholar 

  • Trentin L, Miorin M, Facco M et al (2007) Multiple myeloma plasma cells show different chemokine receptor profiles at sites of disease activity. Br J Haematol 138:594–602

    CAS  PubMed  Google Scholar 

  • Turkson J, Jove R (2000) STAT proteins: novel molecular targets for cancer drug discovery. Oncogene 19:6613–6626

    CAS  PubMed  Google Scholar 

  • Vallet S, Anderson KC (2011) CCR1 as a target for multiple myeloma. Expert Opin Ther Targets 15:1037–1047

    CAS  PubMed  Google Scholar 

  • Vallet S, Pozzi S, Patel K et al (2011) A novel role for CCL3 (MIP-1alpha) in myeloma-induced bone disease via osteocalcin downregulation and inhibition of osteoblast function. Leukemia 25:1174–1181

    CAS  PubMed  Google Scholar 

  • Van Damme J, Van Snick J (1988) Induction of hybridoma growth factor (HGF) identical to IL-6, in human fibroblasts by IL-1: use of HGF activity in specific and sensitive biological assays for IL-1 and IL-6. Dev Biol Stand 69:31–38

    PubMed  Google Scholar 

  • Van Damme J, Opdenakker G, Simpson RJ (1987) Identification of the human 26-kD protein, interferon β2 (IFN-β2), as a B cell hybridoma/plasmacytoma growth factor induced by interleukin 1 and tumor necrosis factor. J Exp Med 165:914–919

    PubMed  Google Scholar 

  • Vande Broek I, Asosingh K, Allegaert V et al (2004) Bone marrow endothelial cells increase the invasiveness of human multiple myeloma cells through upregulation of MMP-9: evidence for a role of hepatocyte growth factor. Leukemia 18:976–982

    CAS  PubMed  Google Scholar 

  • Wader KF, Fagerli UM, Holt RU et al (2008) Elevated serum concentrations of activated hepatocyte growth factor activator in patients with multiple myeloma. Eur J Haematol 81:380–383

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang H, Fan R, Wang XQ et al (2012) Methylation of Wnt antagonist genes: a useful prognostic marker for myelodysplastic syndrome. Ann Hematol 92(2):199–209

    Google Scholar 

  • Weaver D, Baltimore D (1987) B lymphocyte-specific protein binding near an immunoglobulin κ-chain gene J segment (DNA binding protein/B cell-specific protein/DNA rearranggement). Proc Natl Acad Sci USA 84:1516–1520

    CAS  PubMed  Google Scholar 

  • Yamamoto M, Nishimoto N, Davydova J et al (2006) Suppressor of cytokine signaling-1 expression by infectivity-enhanced adenoviral vector inhibits IL-6-dependent proliferation of multiple myeloma cells. Cancer Gene Ther 13:194–202

    CAS  PubMed  Google Scholar 

  • Yang LJ, Chen Y, He J et al (2012) Effects of gambogic acid on the activation of caspase-3 and downregulation of SIRT1 in RPMI-8226 multiple myeloma cells via the accumulation of ROS. Oncol Lett 3:1159–1165

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9:798–809

    CAS  PubMed  Google Scholar 

  • Zandi E, Karin M (1999) Bridging the gap: composition, regulation, and physiological function of the IkappaB kinase complex. Mol Cell Biol 19:4547–4551

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zollinger A, Stuhmer T, Chatterjee M et al (2008) Combined functional and molecular analysis of tumor cell signaling defines 2 distinct myeloma subgroups: Akt-dependent and Akt-independent multiple myeloma. Blood 112:3403–3411

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NUS Bench to Bedside grant to GS. This work was also supported by the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korean Ministry of Education, Science and Technology (MoEST) (No. 2011-0006220) to KSA. APK was supported by grants from the National Medical Research Council of Singapore [Grant R-713-000-124-213], Ministry of Education, Singapore [MOE2012-T2-2-139] and Cancer Science Institute of Singapore, Experimental Therapeutics I Program [Grant R-713-001-011-271].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gautam Sethi or Kwang Seok Ahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sikka, S., Shanmugam, M.K., Kannaiyan, R. et al. Suppression of essential pro-inflammatory signaling pathways by natural agents for the therapy of Multiple Myeloma. Phytochem Rev 13, 79–106 (2014). https://doi.org/10.1007/s11101-013-9287-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-013-9287-3

Keywords

Navigation