Skip to main content
Log in

Physiological Dynamics in the Upper Gastrointestinal Tract and the Development of Gastrointestinal Absorption Models for the Immediate-Release Oral Dosage Forms in Healthy Adult Human

  • Review Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

This review is a revisit of various oral drug absorption models developed in the past decades, focusing on how to incorporate the physiological dynamics in the upper gastrointestinal (GI) tract. For immediate-release oral drugs, GI absorption is a critical input of drug exposure and subsequent human body response, yet difficult to model largely due to the complex GI environment. One of the biggest hurdles lies at capturing the high within-subject variability (WSV) of bioavailability measures, which can be mechanistically explained by the GI physiological dynamics. A thorough summary of how GI dynamics is handled in the absorption models would promote the development of mechanism-based oral drug absorption models, aid in the design of clinical studies regarding dosing regimens and bioequivalence studies based on WSV, and advance the decision-making on formulation selection.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

No data were used in this manuscript.

References

  1. Lennernas H. Human intestinal permeability. J Pharm Sci-US. 1998;87(4):403–10. https://doi.org/10.1021/js970332a.

    Article  CAS  Google Scholar 

  2. Yu LX, Lipka E, Crison JR, Amidon GL. Transport approaches to the biopharmaceutical design of oral drug delivery systems: Prediction of intestinal absorption. Adv Drug Deliver Rev. 1996;19(3):359–76. https://doi.org/10.1016/0169-409x(96)00009-9.

    Article  CAS  Google Scholar 

  3. Waiver of In Vivo Bioavailability and Bioequivalence Studies for Immediate-Release Solid Oral Dosage Forms Based on a Biopharmaceutics Classification System. U.S. Food and Drug Administration; 2017.

  4. M9 Biopharmaceutics Classfication System-based Biowaivers. International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use; 2019.

  5. Amidon GL, Lennernas H, Shah VP, Crison JR. A Theoretical Basis for a Biopharmaceutic Drug Classification - the Correlation of in-Vitro Drug Product Dissolution and in-Vivo Bioavailability. Pharmaceut Res. 1995;12(3):413–20. https://doi.org/10.1023/A:1016212804288.

    Article  CAS  Google Scholar 

  6. Statistical Approaches to Establishing Bioequivalence. In: Research CfDEa, editor. Revision 1 ed. Rockville, MD, USA: U.S. Food and Drug Administration; 2022.

  7. Tornoe CW, Overgaard RV, Agerso H, Nielsen HA, Madsen H, Jonsson EN. Stochastic differential equations in NONMEM: implementation, application, and comparison with ordinary differential equations. Pharm Res. 2005;22(8):1247–58. https://doi.org/10.1007/s11095-005-5269-5.

    Article  CAS  PubMed  Google Scholar 

  8. Wang K, Li Y, Chen B, Chen H, Smith DE, Sun D, et al. In Vitro Predictive Dissolution Test Should Be Developed and Recommended as a Bioequivalence Standard for the Immediate-Release Solid Oral Dosage Forms of the Highly Variable Mycophenolate Mofetil. Mol Pharm. 2022;19(7):2048–60. https://doi.org/10.1021/acs.molpharmaceut.1c00792.

    Article  CAS  PubMed  Google Scholar 

  9. Shah VP, Yacobi A, Barr WH, Benet LZ, Breimer D, Dobrinska MR, et al. Evaluation of orally administered highly variable drugs and drug formulations. Pharmaceut Res. 1996;13(11):1590–4. https://doi.org/10.1023/A:1016468018478.

    Article  CAS  Google Scholar 

  10. Davit BM, Chen ML, Conner DP, Haidar SH, Kim S, Lee CH, et al. Implementation of a reference-scaled average bioequivalence approach for highly variable generic drug products by the US Food and Drug Administration. AAPS J. 2012;14(4):915–24. https://doi.org/10.1208/s12248-012-9406-x.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Cvijic S, Parojcic J, Langguth P. Viscosity-mediated negative food effect on oral absorption of poorly-permeable drugs with an absorption window in the proximal intestine: In vitro experimental simulation and computational verification. Eur J Pharm Sci. 2014;61:40–53. https://doi.org/10.1016/j.ejps.2014.04.008.

    Article  CAS  PubMed  Google Scholar 

  12. Barrett KE. Gastrointestinal physiology. 2nd ed. McGraw-Hill's AccessMedicine. New York, N.Y.: McGraw-Hill Education LLC, 2014.

  13. Schuster MM, Crowell MD, Koch KL. Schuster atlas of gastrointestinal motility in health and disease. 2nd ed. Hamilton: B.C. Decker; 2002.

  14. Johnson LR. Physiology of the gastrointestinal tract. 5th ed. London: Academic Press; 2012.

    Google Scholar 

  15. Food-Effect Bioavailability and Fed Bioequivalence Studies. U.S. Food and Drug Administration; 2018.

  16. Wang K, Marciani L, Amidon GL, Smith DE, Sun D. Stochastic Differential Equation-based Mixed Effects Model of the Fluid Volume in the Fasted Stomach in Healthy Adult Human. AAPS J. 2023;25(5):76. https://doi.org/10.1208/s12248-023-00840-3.

    Article  PubMed  Google Scholar 

  17. Koziolek M, Alcaro S, Augustijns P, Basit AW, Grimm M, Hens B, et al. The mechanisms of pharmacokinetic food-drug interactions - A perspective from the UNGAP group. Eur J Pharm Sci. 2019;134:31–59. https://doi.org/10.1016/j.ejps.2019.04.003.

    Article  CAS  PubMed  Google Scholar 

  18. Ouyang A, Sunshine AG, Reynolds JC. Caloric Content of a Meal Affects Duration but Not Contractile Pattern of Duodenal Motility in Man. Digest Dis Sci. 1989;34(4):528–36. https://doi.org/10.1007/Bf01536328.

    Article  CAS  PubMed  Google Scholar 

  19. Siegel JA, Urbain JL, Adler LP, Charkes ND, Maurer AH, Krevsky B, et al. Biphasic Nature of Gastric-Emptying. Gut. 1988;29(1):85–9. https://doi.org/10.1136/gut.29.1.85.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Shore PA, Brodie BB, Hogben CA. The gastric secretion of drugs: a pH partition hypothesis. J Pharmacol Exp Ther. 1957;119(3):361–9.

    CAS  PubMed  Google Scholar 

  21. Hens B, Tsume Y, Bermejo M, Paixao P, Koenigsknecht MJ, Baker JR, et al. Low Buffer Capacity and Alternating Motility along the Human Gastrointestinal Tract: Implications for in Vivo Dissolution and Absorption of Ionizable Drugs. Mol Pharm. 2017. https://doi.org/10.1021/acs.molpharmaceut.7b00426.

    Article  PubMed  Google Scholar 

  22. Mudie DM, Murray K, Hoad CL, Pritchard SE, Garnett MC, Amidon GL, et al. Quantification of gastrointestinal liquid volumes and distribution following a 240 mL dose of water in the fasted state. Mol Pharm. 2014;11(9):3039–47. https://doi.org/10.1021/mp500210c.

    Article  CAS  PubMed  Google Scholar 

  23. DiMagno EP. Regulation of interdigestive gastrointestinal motility and secretion. Digestion. 1997;58(Suppl 1):53–5.

    Article  PubMed  Google Scholar 

  24. Kalantzi L, Goumas K, Kalioras V, Abrahamsson B, Dressman JB, Reppas C. Characterization of the human upper gastrointestinal contents under conditions simulating bioavailability/bioequivalence studies. Pharmaceut Res. 2006;23(1):165–76. https://doi.org/10.1007/s11095-005-8476-1.

    Article  CAS  Google Scholar 

  25. Clarysse S, Tack J, Lammert F, Duchateau G, Reppas C, Augustijns P. Postprandial evolution in composition and characteristics of human duodenal fluids in different nutritional states. J Pharm Sci. 2009;98(3):1177–92. https://doi.org/10.1002/jps.21502.

    Article  CAS  PubMed  Google Scholar 

  26. Kaunitz JD, Akiba Y. Review article: duodenal bicarbonate - mucosal protection, luminal chemosensing and acid-base balance. Aliment Pharmacol Ther. 2006;24(Suppl 4):169–76. https://doi.org/10.1111/j.1365-2036.2006.00041.x.

    Article  PubMed  Google Scholar 

  27. Hogan DL, Ainsworth MA, Isenberg JI. Review article: gastroduodenal bicarbonate secretion. Aliment Pharmacol Ther. 1994;8(5):475–88.

    Article  CAS  PubMed  Google Scholar 

  28. Fuchs A, Dressman JB. Composition and physicochemical properties of fasted-state human duodenal and jejunal fluid: a critical evaluation of the available data. J Pharm Sci. 2014;103(11):3398–411. https://doi.org/10.1002/jps.24183.

    Article  CAS  PubMed  Google Scholar 

  29. McNamara DP, Whitney KM, Goss SL. Use of a physiologic bicarbonate buffer system for dissolution characterization of ionizable drugs. Pharmaceut Res. 2003;20(10):1641–6. https://doi.org/10.1023/A:1026147620304.

    Article  CAS  Google Scholar 

  30. Koziolek M, Schneider F, Grimm M, Modebeta C, Seekamp A, Roustom T, et al. Intragastric pH and pressure profiles after intake of the high-caloric, high-fat meal as used for food effect studies. J Control Release. 2015;220(Pt A):71–8. https://doi.org/10.1016/j.jconrel.2015.10.022.

    Article  CAS  PubMed  Google Scholar 

  31. Dressman JB, Berardi RR, Dermentzoglou LC, Russell TL, Schmaltz SP, Barnett JL, et al. Upper gastrointestinal (GI) pH in young, healthy men and women. Pharm Res. 1990;7(7):756–61. https://doi.org/10.1023/a:1015827908309.

    Article  CAS  PubMed  Google Scholar 

  32. Russell TL, Berardi RR, Barnett JL, Dermentzoglou LC, Jarvenpaa KM, Schmaltz SP, et al. Upper gastrointestinal pH in seventy-nine healthy, elderly, North American men and women. Pharm Res. 1993;10(2):187–96. https://doi.org/10.1023/a:1018970323716.

    Article  CAS  PubMed  Google Scholar 

  33. Cheng LS, Wong H. Food effects on oral drug absorption: application of physiologically-based pharmacokinetic modeling as a predictive tool. Pharmaceutics. 2020;12(7). ARTN 672. https://doi.org/10.3390/pharmaceutics12070672.

  34. Koziolek M, Grimm M, Schneider F, Jedamzik P, Sager M, Kuhn JP, et al. Navigating the human gastrointestinal tract for oral drug delivery: Uncharted waters and new frontiers. Adv Drug Deliv Rev. 2016;101:75–88. https://doi.org/10.1016/j.addr.2016.03.009.

    Article  CAS  PubMed  Google Scholar 

  35. Grimm M, Koziolek M, Kuhn JP, Weitschies W. Interindividual and intraindividual variability of fasted state gastric fluid volume and gastric emptying of water. Eur J Pharm Biopharm. 2018;127:309–17. https://doi.org/10.1016/j.ejpb.2018.03.002.

    Article  PubMed  Google Scholar 

  36. Koziolek M, Grimm M, Garbacz G, Kuhn JP, Weitschies W. Intragastric volume changes after intake of a high-caloric, high-fat standard breakfast in healthy human subjects investigated by MRI. Mol Pharm. 2014;11(5):1632–9. https://doi.org/10.1021/mp500022u.

    Article  CAS  PubMed  Google Scholar 

  37. Pentafragka C, Vertzoni M, Symillides M, Goumas K, Reppas C. Disposition of two highly permeable drugs in the upper gastrointestinal lumen of healthy adults after a standard high-calorie, high-fat meal. Eur J Pharm Sci. 2020;149:105351. https://doi.org/10.1016/j.ejps.2020.105351.

    Article  CAS  PubMed  Google Scholar 

  38. Schiller C, Frohlich CP, Giessmann T, Siegmund W, Monnikes H, Hosten N, et al. Intestinal fluid volumes and transit of dosage forms as assessed by magnetic resonance imaging. Aliment Pharm Therap. 2005;22(10):971–9. https://doi.org/10.1111/j.1365-2036.2005.02683.x.

    Article  CAS  Google Scholar 

  39. Mudie DM, Amidon GL, Amidon GE. Physiological parameters for oral delivery and in vitro testing. Mol Pharm. 2010;7(5):1388–405. https://doi.org/10.1021/mp100149j.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. de la Cruz Perez, Moreno M, Oth M, Deferme S, Lammert F, Tack J, Dressman J, et al. Characterization of fasted-state human intestinal fluids collected from duodenum and jejunum. J Pharm Pharmacol. 2006;58(8):1079–89. https://doi.org/10.1211/jpp.58.8.0009.

    Article  CAS  Google Scholar 

  41. Riethorst D, Mols R, Duchateau G, Tack J, Brouwers J, Augustijns P. Characterization of Human Duodenal Fluids in Fasted and Fed State Conditions. J Pharm Sci. 2016;105(2):673–81. https://doi.org/10.1002/jps.24603.

    Article  CAS  PubMed  Google Scholar 

  42. Keszthelyi D, Knol D, Troost FJ, van Avesaat M, Foltz M, Masclee AA. Time of ingestion relative to meal intake determines gastrointestinal responses to a plant sterol-containing yoghurt drink. Eur J Nutr. 2013;52(4):1417–20. https://doi.org/10.1007/s00394-012-0440-3.

    Article  CAS  PubMed  Google Scholar 

  43. Marciani L, Gowland PA, Spiller RC, Manoj P, Moore RJ, Young P, et al. Gastric response to increased meal viscosity assessed by echo-planar magnetic resonance imaging in humans. J Nutr. 2000;130(1):122–7. https://doi.org/10.1093/jn/130.1.122.

    Article  CAS  PubMed  Google Scholar 

  44. Thomas G, Girre C, Scherrmann JM, Francheteau P, Steimer JL. Zero-order absorption and linear disposition of oral colchicine in healthy volunteers. Eur J Clin Pharmacol. 1989;37(1):79–84. https://doi.org/10.1007/BF00609430.

    Article  CAS  PubMed  Google Scholar 

  45. Wagner JG, Nelson E. Per cent absorbed time plots derived from blood level and/or urinary excretion data. J Pharm Sci. 1963;52:610–1. https://doi.org/10.1002/jps.2600520629.

    Article  CAS  PubMed  Google Scholar 

  46. Loo JC, Riegelman S. New method for calculating the intrinsic absorption rate of drugs. J Pharm Sci. 1968;57(6):918–28. https://doi.org/10.1002/jps.2600570602.

    Article  CAS  PubMed  Google Scholar 

  47. Rousseau A, Leger F, Le Meur Y, Saint-Marcoux F, Paintaud G, Buchler M, et al. Population pharmacokinetic modeling of oral cyclosporin using NONMEM: comparison of absorption pharmacokinetic models and design of a Bayesian estimator. Ther Drug Monit. 2004;26(1):23–30. https://doi.org/10.1097/00007691-200402000-00006.

    Article  CAS  PubMed  Google Scholar 

  48. Savic RM, Jonker DM, Kerbusch T, Karlsson MO. Implementation of a transit compartment model for describing drug absorption in pharmacokinetic studies. J Pharmacokinet Pharmacodyn. 2007;34(5):711–26. https://doi.org/10.1007/s10928-007-9066-0.

    Article  CAS  PubMed  Google Scholar 

  49. Karatza E, Karalis V. Delay differential equations for the description of Irbesartan pharmacokinetics: A population approach to model absorption complexities leading to dual peaks. Eur J Pharm Sci. 2020;153:105498. https://doi.org/10.1016/j.ejps.2020.105498.

    Article  CAS  PubMed  Google Scholar 

  50. Higaki K, Yamashita S, Amidon GL. Time-dependent oral absorption models. J Pharmacokinet Pharmacodyn. 2001;28(2):109–28.

    Article  CAS  PubMed  Google Scholar 

  51. Garrigues TM, Martin U, Peris-Ribera JE, Prescott LF. Dose-dependent absorption and elimination of cefadroxil in man. Eur J Clin Pharmacol. 1991;41(2):179–83. https://doi.org/10.1007/BF00265914.

    Article  CAS  PubMed  Google Scholar 

  52. Cosson VF, Fuseau E. Mixed effect modeling of sumatriptan pharmacokinetics during drug development: II. From healthy subjects to phase 2 dose ranging in patients. J Pharmacokinet Biopharm. 1999;27(2):149–71. https://doi.org/10.1023/a:1020601906027.

    Article  CAS  PubMed  Google Scholar 

  53. Riad LE, Chan KK, Wagner WE Jr, Sawchuk RJ. Simultaneous first- and zero-order absorption of carbamazepine tablets in humans. J Pharm Sci. 1986;75(9):897–900. https://doi.org/10.1002/jps.2600750916.

    Article  CAS  PubMed  Google Scholar 

  54. Locatelli I, Mrhar A, Bogataj M. Gastric Emptying of Pellets under Fasting Conditions: A Mathematical Model. Pharmaceut Res. 2009;26(7):1607–17. https://doi.org/10.1007/s11095-009-9869-3.

    Article  CAS  Google Scholar 

  55. Wu K, Cohen EE, House LK, Ramirez J, Zhang W, Ratain MJ, et al. Nonlinear population pharmacokinetics of sirolimus in patients with advanced cancer. CPT Pharmacometrics Syst Pharmacol. 2012;1:e17. https://doi.org/10.1038/psp.2012.18.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Ogungbenro K, Pertinez H, Aarons L. Empirical and semi-mechanistic modelling of double-peaked pharmacokinetic profile phenomenon due to gastric emptying. AAPS J. 2015;17(1):227–36. https://doi.org/10.1208/s12248-014-9693-5.

    Article  CAS  PubMed  Google Scholar 

  57. Paixao P, Bermejo M, Hens B, Tsume Y, Dickens J, Shedden K, et al. Gastric emptying and intestinal appearance of nonabsorbable drugs phenol red and paromomycin in human subjects: A multi-compartment stomach approach. Eur J Pharm Biopharm. 2018;129:162–74. https://doi.org/10.1016/j.ejpb.2018.05.033.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Csajka C, Drover D, Verotta D. The use of a sum of inverse Gaussian functions to describe the absorption profile of drugs exhibiting complex absorption. Pharmaceut Res. 2005;22(8):1227–35. https://doi.org/10.1007/s11095-005-5266-8.

    Article  CAS  Google Scholar 

  59. Karatza E, Karalis V. Modelling gastric emptying: A pharmacokinetic model simultaneously describing distribution of losartan and its active metabolite EXP-3174. Basic Clin Pharmacol Toxicol. 2020;126(3):193–202. https://doi.org/10.1111/bcpt.13321.

    Article  CAS  PubMed  Google Scholar 

  60. Talattof A, Price JC, Amidon GL. Gastrointestinal Motility Variation and Implications for Plasma Level Variation: Oral Drug Products. Mol Pharmaceut. 2016;13(2):557–67. https://doi.org/10.1021/acs.molpharmaceut.5b00774.

    Article  CAS  Google Scholar 

  61. Karatza E, Karalis V. Investigating the Impact of Gastric Emptying on Pharmacokinetic Parameters Using Delay Differential Equations and Principal Component Analysis. Eur J Drug Metab Ph. 2021. https://doi.org/10.1007/s13318-021-00683-3.

    Article  Google Scholar 

  62. Abuhelwa AY, Foster DJR, Upton RN. A Quantitative Review and Meta-models of the Variability and Factors Affecting Oral Drug Absorption-Part II: Gastrointestinal Transit Time. AAPS J. 2016;18(5):1322–33. https://doi.org/10.1208/s12248-016-9953-7.

    Article  CAS  PubMed  Google Scholar 

  63. Abuhelwa AY, Foster DJR, Upton RN. A Quantitative Review and Meta-Models of the Variability and Factors Affecting Oral Drug Absorption-Part I: Gastrointestinal pH. AAPS J. 2016;18(5):1309–21. https://doi.org/10.1208/s12248-016-9952-8.

    Article  CAS  PubMed  Google Scholar 

  64. Plusquellec Y, Campistron G, Staveris S, Barre J, Jung L, Tillement JP, et al. A double-peak phenomenon in the pharmacokinetics of veralipride after oral administration: a double-site model for drug absorption. J Pharmacokinet Biopharm. 1987;15(3):225–39. https://doi.org/10.1007/BF01066319.

    Article  CAS  PubMed  Google Scholar 

  65. Henin E, Bergstrand M, Weitschies W, Karlsson MO. Meta-analysis of Magnetic Marker Monitoring Data to Characterize the Movement of Single Unit Dosage Forms Though the Gastrointestinal Tract Under Fed and Fasting Conditions. Pharmaceut Res. 2016;33(3):751–62. https://doi.org/10.1007/s11095-015-1824-x.

    Article  CAS  Google Scholar 

  66. Yun HY, Joo Lee E, Youn Chung S, Choi SO, Kee Kim H, Kwon JT, et al. The effects of food on the bioavailability of fenofibrate administered orally in healthy volunteers via sustained-release capsule. Clin Pharmacokinet. 2006;45(4):425–32. https://doi.org/10.2165/00003088-200645040-00007.

    Article  CAS  PubMed  Google Scholar 

  67. Dressman JB, Fleisher D. Mixing-tank model for predicting dissolution rate control or oral absorption. J Pharm Sci. 1986;75(2):109–16. https://doi.org/10.1002/jps.2600750202.

    Article  CAS  PubMed  Google Scholar 

  68. Dressman JB, Fleisher D, Amidon GL. Physicochemical model for dose-dependent drug absorption. J Pharm Sci. 1984;73(9):1274–9. https://doi.org/10.1002/jps.2600730922.

    Article  CAS  PubMed  Google Scholar 

  69. Yu LX, Amidon GL. A compartmental absorption and transit model for estimating oral drug absorption. Int J Pharmaceut. 1999;186(2):119–25. https://doi.org/10.1016/S0378-5173(99)00147-7.

    Article  CAS  Google Scholar 

  70. Agoram B, Woltosz WS, Bolger MB. Predicting the impact of physiological and biochemical processes on oral drug bioavailability. Adv Drug Deliv Rev. 2001;50(Suppl 1):S41-67.

    Article  CAS  PubMed  Google Scholar 

  71. Jamei M, Marciniak S, Feng K, Barnett A, Tucker G, Rostami-Hodjegan A. The Simcyp population-based ADME simulator. Expert Opin Drug Metab Toxicol. 2009;5(2):211–23. https://doi.org/10.1517/17425250802691074.

    Article  CAS  PubMed  Google Scholar 

  72. Arora S, Pansari A, Kilford P, Jamei M, Gardner I, Turner DB. Biopharmaceutic In Vitro In Vivo Extrapolation (IVIV_E) Informed Physiologically-Based Pharmacokinetic Model of Ritonavir Norvir Tablet Absorption in Humans Under Fasted and Fed State Conditions. Mol Pharm. 2020;17(7):2329–44. https://doi.org/10.1021/acs.molpharmaceut.0c00043.

    Article  CAS  PubMed  Google Scholar 

  73. Wang J, Flanagan DR. General solution for diffusion-controlled dissolution of spherical particles. 1. Theory. J Pharm Sci. 1999;88(7):731–8. https://doi.org/10.1021/js980236p.

    Article  CAS  PubMed  Google Scholar 

  74. Sjogren E, Westergren J, Grant I, Hanisch G, Lindfors L, Lennernas H, et al. In silico predictions of gastrointestinal drug absorption in pharmaceutical product development: application of the mechanistic absorption model GI-Sim. Eur J Pharm Sci. 2013;49(4):679–98. https://doi.org/10.1016/j.ejps.2013.05.019.

    Article  CAS  PubMed  Google Scholar 

  75. Sjogren E, Thorn H, Tannergren C. In Silico Modeling of Gastrointestinal Drug Absorption: Predictive Performance of Three Physiologically Based Absorption Models. Mol Pharm. 2016;13(6):1763–78. https://doi.org/10.1021/acs.molpharmaceut.5b00861.

    Article  CAS  PubMed  Google Scholar 

  76. Demeester C, Robins D, Edwina AE, Tournoy J, Augustijns P, Ince I, et al. Physiologically based pharmacokinetic (PBPK) modelling of oral drug absorption in older adults - an AGePOP review. Eur J Pharm Sci. 2023;188:106496. https://doi.org/10.1016/j.ejps.2023.106496.

    Article  CAS  PubMed  Google Scholar 

  77. Jamei M, Turner D, Yang J, Neuhoff S, Polak S, Rostami-Hodjegan A, et al. Population-based mechanistic prediction of oral drug absorption. AAPS J. 2009;11(2):225–37. https://doi.org/10.1208/s12248-009-9099-y.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Chirumamilla SK, Banala VT, Jamei M, Turner DB. Mechanistic PBPK modelling to predict the advantage of the salt form of a drug when dosed with acid reducing agents. Pharmaceutics. 2021;13(8). https://doi.org/10.3390/pharmaceutics13081169.

  79. Oberle RL, Amidon GL. The influence of variable gastric emptying and intestinal transit rates on the plasma level curve of cimetidine; an explanation for the double peak phenomenon. J Pharmacokinet Biopharm. 1987;15(5):529–44. https://doi.org/10.1007/BF01061761.

    Article  CAS  PubMed  Google Scholar 

  80. Langguth P, Lee KM, Spahn-Langguth H, Amidon GL. Variable gastric emptying and discontinuities in drug absorption profiles: dependence of rates and extent of cimetidine absorption on motility phase and pH. Biopharm Drug Dispos. 1994;15(9):719–46.

    Article  CAS  PubMed  Google Scholar 

  81. Stamatis SD, Rose JP. Lilly Absorption Modeling Platform: A Tool for Early Absorption Assessment. Mol Pharm. 2022;19(1):213–26. https://doi.org/10.1021/acs.molpharmaceut.1c00726.

    Article  CAS  PubMed  Google Scholar 

  82. Talattof A, Amidon GL. Pulse Packet Stochastic Model for Gastric Emptying in the Fasted State: A Physiological Approach. Mol Pharmaceut. 2018;15(6):2107–15. https://doi.org/10.1021/acs.molpharmaceut.7b01077.

    Article  CAS  Google Scholar 

  83. Stamatopoulos K, Pathak SM, Marciani L, Turner DB. Population-Based PBPK Model for the Prediction of Time-Variant Bile Salt Disposition within GI Luminal Fluids. Mol Pharm. 2020;17(4):1310–23. https://doi.org/10.1021/acs.molpharmaceut.0c00019.

    Article  CAS  PubMed  Google Scholar 

  84. Langenbucher F. Linearization of dissolution rate curves by the Weibull distribution. J Pharm Pharmacol. 1972;24(12):979–81. https://doi.org/10.1111/j.2042-7158.1972.tb08930.x.

    Article  CAS  PubMed  Google Scholar 

  85. Stubbs DF. Models of gastric emptying. Gut. 1977;18(3):202–7. https://doi.org/10.1136/gut.18.3.202.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Yokrattanasak J, De Gaetano A, Panunzi S, Satiracoo P, Lawton WM, Lenbury Y. A Simple, Realistic Stochastic Model of Gastric Emptying. PLoS One. 2016;11(4):e0153297. https://doi.org/10.1371/journal.pone.0153297.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Liu B, Jamei M, Rostami-Hodjegan A, Turner DB. PBPK modeling of Negative Food Effects upon Oral Drug Absorption of the BCS Class III Drug Trospium Chloride (TC): Combination of a Dynamic Viscosity-Disintegration Model and the ADAM (Advanced Dissolution, Absorption and Metabolism. 2013 AAPS Annual Meeting and Exposition. San Antonio, USA 2013.

  88. Liu B, Jamei M, Rostami-Hodjegan A, Turner DB. Toward Mechanistic Modeling of Negative Food Effects upon Oral Drug Absorption: Linking In Vivo Dynamic Dilution of Digesta to Viscosity, Disintegration and Dissolution Rate. 2013 AAPS Annual Meeting and Exposition. San Antonio, USA 2013.

  89. Koenigsknecht MJ, Baker JR, Wen B, Frances A, Zhang H, Yu A, et al. In Vivo Dissolution and Systemic Absorption of Immediate Release Ibuprofen in Human Gastrointestinal Tract under Fed and Fasted Conditions. Mol Pharm. 2017;14(12):4295–304. https://doi.org/10.1021/acs.molpharmaceut.7b00425.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Mikolajczyk AE, Watson S, Surma BL, Rubin DT. Assessment of Tandem Measurements of pH and Total Gut Transit Time in Healthy Volunteers. Clin Transl Gastroenterol. 2015;6:e100. https://doi.org/10.1038/ctg.2015.22.

    Article  PubMed Central  PubMed  Google Scholar 

  91. Gao H, Shanmugasundaram V, Lee P. Estimation of aqueous solubility of organic compounds with QSPR approach. Pharm Res. 2002;19(4):497–503. https://doi.org/10.1023/a:1015103914543.

    Article  CAS  PubMed  Google Scholar 

  92. Chevillard F, Lagorce D, Reynes C, Villoutreix BO, Vayer P, Miteva MA. In silico prediction of aqueous solubility: a multimodel protocol based on chemical similarity. Mol Pharm. 2012;9(11):3127–35. https://doi.org/10.1021/mp300234q.

    Article  CAS  PubMed  Google Scholar 

  93. Raevsky OA, Polianczyk DE, Grigorev VY, Raevskaja OE, Dearden JC. In silico Prediction of Aqueous Solubility: a Comparative Study of Local and Global Predictive Models. Mol Inform. 2015;34(6–7):417–30. https://doi.org/10.1002/minf.201400144.

    Article  CAS  PubMed  Google Scholar 

  94. Wang NN, Dong J, Deng YH, Zhu MF, Wen M, Yao ZJ, et al. ADME Properties Evaluation in Drug Discovery: Prediction of Caco-2 Cell Permeability Using a Combination of NSGA-II and Boosting. J Chem Inf Model. 2016;56(4):763–73. https://doi.org/10.1021/acs.jcim.5b00642.

    Article  CAS  PubMed  Google Scholar 

  95. Miljkovic F, Martinsson A, Obrezanova O, Williamson B, Johnson M, Sykes A, et al. Machine Learning Models for Human In Vivo Pharmacokinetic Parameters with In-House Validation. Mol Pharm. 2021;18(12):4520–30. https://doi.org/10.1021/acs.molpharmaceut.1c00718.

    Article  CAS  PubMed  Google Scholar 

  96. Ahmed SS, Ramakrishnan V. Systems biological approach of molecular descriptors connectivity: optimal descriptors for oral bioavailability prediction. PLoS One. 2012;7(7):e40654. https://doi.org/10.1371/journal.pone.0040654.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Xu X, Zhang W, Huang C, Li Y, Yu H, Wang Y, et al. A novel chemometric method for the prediction of human oral bioavailability. Int J Mol Sci. 2012;13(6):6964–82. https://doi.org/10.3390/ijms13066964.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  98. Tian S, Li Y, Wang J, Zhang J, Hou T. ADME evaluation in drug discovery. 9. Prediction of oral bioavailability in humans based on molecular properties and structural fingerprints. Mol Pharm. 2011;8(3):841–51. https://doi.org/10.1021/mp100444g.

    Article  CAS  PubMed  Google Scholar 

  99. Xu Y, Ma J, Liaw A, Sheridan RP, Svetnik V. Demystifying Multitask Deep Neural Networks for Quantitative Structure-Activity Relationships. J Chem Inf Model. 2017;57(10):2490–504. https://doi.org/10.1021/acs.jcim.7b00087.

    Article  CAS  PubMed  Google Scholar 

  100. Wright MR. Opportunities and Considerations in the Application of Artificial Intelligence to Pharmacokinetic Prediction. Methods Mol Biol. 2022;2390:461–82. https://doi.org/10.1007/978-1-0716-1787-8_21.

    Article  CAS  PubMed  Google Scholar 

  101. Poynton MR, Choi BM, Kim YM, Park IS, Noh GJ, Hong SO, et al. Machine learning methods applied to pharmacokinetic modelling of remifentanil in healthy volunteers: a multi-method comparison. J Int Med Res. 2009;37(6):1680–91. https://doi.org/10.1177/147323000903700603.

    Article  CAS  PubMed  Google Scholar 

  102. Gao F, Xu J, Liu H, Shi P. Reinforcement Learning Based Model Selection and Parameter Estimation for Pharmacokinetic Analysis in Drug Selection. In: Liao H, Linte CA, Masamune K, Peters TM, Zheng G, editors. MIAR AE-CAI 2013: Springer. Berlin: Heidelberg; 2013. p. 221–30.

    Google Scholar 

  103. Liu X, Liu C, Huang R, Zhu H, Liu Q, Mitra S, et al. Long short-term memory recurrent neural network for pharmacokinetic-pharmacodynamic modeling. Int J Clin Pharmacol Ther. 2021;59(2):138–46. https://doi.org/10.5414/CP203800.

    Article  PubMed  Google Scholar 

  104. Lu J, Deng K, Zhang X, Liu G, Guan Y. Neural-ODE for pharmacokinetics modeling and its advantage to alternative machine learning models in predicting new dosing regimens. iScience. 2021;24(7):102804. https://doi.org/10.1016/j.isci.2021.102804.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This review was adapted from the Chapter 1 of the PhD thesis of Kai Wang entitled with “Mechanistic Model-based Drug Oral Absorption Analysis” with additional summary and discussion. Special appreciation goes to the anonymous reviewers who made insightful and constructive comments to improve the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Dr. Wang drafted the manuscript. Dr. Amidon and Dr. Smith revised the manuscript. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Kai Wang.

Ethics declarations

Conflict of Interest

Nothing to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Amidon, G.L. & Smith, D.E. Physiological Dynamics in the Upper Gastrointestinal Tract and the Development of Gastrointestinal Absorption Models for the Immediate-Release Oral Dosage Forms in Healthy Adult Human. Pharm Res 40, 2607–2626 (2023). https://doi.org/10.1007/s11095-023-03597-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-023-03597-8

Keywords

Navigation