Skip to main content

Advertisement

Log in

Unravelling the Hepatic Elimination Mechanisms of Colistin

  • Original Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Colistin is an antibiotic which is increasingly used as a last-resort therapy in critically-ill patients with multidrug resistant Gram-negative infections. The purpose of this study was to evaluate the mechanisms underlying colistin’s pharmacokinetic (PK) behavior and to characterize its hepatic metabolism.

Methods

In vitro incubations were performed using colistin sulfate with rat liver microsomes (RLM) and with rat and human hepatocytes (RH and HH) in suspension. The uptake of colistin in RH/HH and thefraction of unbound colistin in HH (fu,hep) was determined. In vitro to in vivo extrapolation (IVIVE) was employed to predict the hepatic clearance (CLh) of colistin.

Results

Slow metabolism was detected in RH/HH, with intrinsic clearance (CLint) values of 9.34± 0.50 and 3.25 ± 0.27 mL/min/kg, respectively. Assuming the well-stirred model for hepatic drug elimination, the predicted rat CLh was 3.64± 0.22 mL/min/kg which could explain almost 70% of the reported non-renal in vivo clearance. The predicted human CLh was 91.5 ± 8.83 mL/min, which was within two-fold of the reported plasma clearance in healthy volunteers. When colistin was incubated together with the multidrug resistance-associated protein (MRP/Mrp) inhibitor benzbromarone, the intracellular accumulation of colistin in RH/HH increased significantly.

Conclusion

These findings indicate the major role of hepatic metabolism in the non-renal clearance of colistin, while MRP/Mrp-mediated efflux is involved in the hepatic disposition of colistin. Our data provide detailed quantitative insights into the hereto unknown mechanisms responsible for non-renal elimination of colistin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AUC:

Area under the curve

CLh :

Hepatic clearance

CLp :

Plasma clearance

CLint

intrinsic clearance

CLmet :

Intrinsic clearance via hepatic metabolism

Css,avg :

Average steady state plasma colistin concentration

\({\mathrm{CL}}_{\mathrm{in}}^s\) :

Intrinsic clearance via sinusoidal influx

\({\mathrm{CL}}_{\mathrm{ef}}^s\) :

Intrinsic clearance via sinusoidal efflux

CMS:

Colistin methanesulphonate

CV:

Coefficient of variation

F:

CMS molar fraction that becomes systemically available as colistin (in vivo)

fu :

Fraction unbound in plasma

fu,hep :

Fraction unbound in hepatocytes

HPGL:

Number of hepatocytes per gram liver

HH:

Human hepatocytes

IVIVE:

In vitro-in vivo extrapolation

MIU:

Million international units

MRP/Mrp:

Multidrug resistance-associated proteins

OATP:

Organic anion transporting polypeptides

PK:

Pharmacokinetic

RH:

Rat hepatocytes

RLM:

Rat liver microsomes

SCH:

Sandwich cultured hepatocytes

SCRH:

Sandwich cultured rat hepatocytes

References

  1. Spapen H, Jacobs R, Van Gorp V, Troubleyn J, Honore PM. Renal and neurological side effects of colistin in critically ill patients. Ann Intensive Care. 2011;1:14. https://doi.org/10.1186/2110-5820-1-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bergen PJ, Li J, Rayner CR, Nation RL. Colistin methanesulfonate is an inactive prodrug of colistin against Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2006;50:1953–8. https://doi.org/10.1128/Aac.00035-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bergen PJ, Landersdorfer CB, Lee HJ, Li J, Nation RL. 'Old' antibiotics for emerging multidrug-resistant bacteria. Curr Opin Infect Dis. 2012;25:626–33. https://doi.org/10.1097/QCO.0b013e328358afe5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Couet W, Gregoire N, Gobin P, Saulnier PJ, Frasca D, Marchand S, Mimoz O. Pharmacokinetics of colistin and colistimethate sodium after a single 80-mg intravenous dose of CMS in young healthy volunteers. Clin Pharmacol Ther. 2011;89:875–9. https://doi.org/10.1038/clpt.2011.48.

    Article  CAS  PubMed  Google Scholar 

  5. Couet W, Gregoire N, Marchand S, Mimoz O. Colistin pharmacokinetics: the fog is lifting. Clin Microbiol Infect. 2012;18:30–9. https://doi.org/10.1111/j.1469-0691.2011.03667.x.

    Article  CAS  PubMed  Google Scholar 

  6. Lancett P, Williamson B, Barton P, Riley RJ. Development and characterization of a human hepatocyte low intrinsic clearance assay for use in drug discovery. Drug Metab Dispos. 2018;46:1169–78. https://doi.org/10.1124/dmd.118.081596.

    Article  CAS  PubMed  Google Scholar 

  7. Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL, Chu X, Dahlin A, Evers R, Fischer V, Hillgren KM, Hoffmaster KA, Ishikawa T, Keppler D, Kim RB, Lee CA, Niemi M, Polli JW, Sugiyama Y, Swaan PW, et al. Membrane transporters in drug development. Nat Rev Drug Discov. 2010;9:215–36. https://doi.org/10.1038/nrd3028.

    Article  CAS  PubMed  Google Scholar 

  8. Prasad B, Gaedigk A, Vrana M, Gaedigk R, Leeder JS, Salphati L, Chu X, Xiao G, Hop CECA, Evers R, Gan L, Unadkat JD. Ontogeny of hepatic drug transporters as quantified by LC-MS/MS proteomics. Clin Pharm Ther. 2016;100:362–70. https://doi.org/10.1002/cpt.409.

    Article  CAS  Google Scholar 

  9. LeCluyse EL. Human hepatocyte culture systems for the in vitro evaluation of cytochrome P450 expression and regulation. Eur J Pharm Sci. 2001;13:343–68. https://doi.org/10.1016/s0928-0987(01)00135-x.

    Article  CAS  PubMed  Google Scholar 

  10. Grime KH, Barton P, McGinnity DF. Application of in silico, in vitro and preclinical pharmacokinetic data for the effective and efficient prediction of human pharmacokinetics. Mol Pharm. 2013;10:1191–206. https://doi.org/10.1021/mp300476z.

    Article  CAS  PubMed  Google Scholar 

  11. Bonn B, Svanberg P, Janefeldt A, Hultman I, Grime K. Determination of human hepatocyte intrinsic clearance for slowly metabolized compounds: comparison of a primary hepatocyte/stromal cell co-culture with plated primary hepatocytes and HepaRG. Drug Metab Dispos. 2016;44:527–33. https://doi.org/10.1124/dmd.115.067769.

    Article  CAS  PubMed  Google Scholar 

  12. Di L, Trapa P, Obach RS, Atkinson K, Bi YA, Wolford AC, Tan BJ, McDonald TS, Lai YR, Tremaine LM. A novel relay method for determining low-clearance values. Drug Metab Dispos. 2012;40:1860–5. https://doi.org/10.1124/dmd.112.046425.

    Article  CAS  PubMed  Google Scholar 

  13. Nation RL, Garonzik SM, Thamlikitkul V, Giamarellos-Bourboulis EJ, Forrest A, Paterson DL, Li J, Silveira FP. Dosing guidance for intravenous colistin in critically-ill patients. Clin Infect Dis. 2017;64:565–71. https://doi.org/10.1093/cid/ciw839.

    Article  CAS  PubMed  Google Scholar 

  14. Nation RL, Garonzik SM, Li J, Thamlikitkul V, Giamarellos-Bourboulis EJ, Paterson DL, Turnidge JD, Forrest A, Silveira FP. Updated US and European dose recommendations for intravenous Colistin: how do they perform? Clin Infect Dis. 2016;62:552–8. https://doi.org/10.1093/cid/civ964.

    Article  PubMed  Google Scholar 

  15. Kumar S, Samuel K, Subramanian R, Braun MP, Stearns RA, Chiu SH, Evans DC, Baillie TA. Extrapolation of diclofenac clearance from in vitro microsomal metabolism data: role of acyl glucuronidation and sequential oxidative metabolism of the acyl glucuronide. J Pharmacol Exp Ther. 2002;303:969–78. https://doi.org/10.1124/jpet.102.038992.

    Article  CAS  PubMed  Google Scholar 

  16. Wood FL, Houston JB, Hallifax D. Clearance prediction methodology needs fundamental improvement: trends common to rat and human hepatocytes/Microsomes and implications for experimental methodology (vol 45, pg 1178, 2017). Drug Metab Dispos. 2017;45:1239–9. https://doi.org/10.1124/dmd.117.077040err.

    Article  Google Scholar 

  17. Li J, Milne RW, Nation RL, Turnidge JD, Smeaton TC, Coulthard K. Use of high-performance liquid chromatography to study the pharmacokinetics of colistin sulfate in rats following intravenous administration. Antimicrob Agents Chemother. 2003;47:1766–70. https://doi.org/10.1128/Aac.47.5.1766-1770.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. De Bruyn T, Chatterjee S, Fattah S, Keemink J, Nicolai J, Augustijns P, Annaert P. Sandwich-cultured hepatocytes: utility for in vitro exploration of hepatobiliary drug disposition and drug-induced hepatotoxicity. Expert Opin Drug Metab Toxicol. 2013;9:589–616. https://doi.org/10.1517/17425255.2013.773973.

    Article  CAS  PubMed  Google Scholar 

  19. Obach RS, Kalgutkar AS, Dalvie DK. 2016. In vitro methods for evaluation of drug metabolism: identification of active and inactive metabolites and the enzymes that generate them. Metabol Safety Drug Dev.:87-110.

  20. Di L, Trapa P, Obach RS, Atkinson K, Bi YA, Wolford AC, Tan B, McDonald TS, Lai Y, Tremaine LM. A novel relay method for determining low-clearance values. Drug Metab Dispos. 2012;40:1860–5. https://doi.org/10.1124/dmd.112.046425.

    Article  CAS  PubMed  Google Scholar 

  21. Jurin RR, McCune SA. Effect of cell density on metabolism in isolated rat hepatocytes. J Cell Physiol. 1985;123:442–8. https://doi.org/10.1002/jcp.1041230322.

    Article  CAS  PubMed  Google Scholar 

  22. Li J, Milne RW, Nation RL, Turnidge JD, Smeaton TC, Coulthard K. Use of high-performance liquid chromatography to study the pharmacokinetics of colistin sulfate in rats following intravenous administration. Antimicrob Agents Chemother. 2003;47:1766–70. https://doi.org/10.1128/aac.47.5.1766-1770.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhao M, Wu XJ, Fan YX, Zhang YY, Guo BN, Yu JC, Cao GY, Chen YC, Wu JF, Shi YG, Li J, Zhang J. Pharmacokinetics of colistin methanesulfonate (CMS) in healthy Chinese subjects after single and multiple intravenous doses. Int J Antimicrob Agents. 2018;51:714–20. https://doi.org/10.1016/j.ijantimicag.2017.12.025.

    Article  CAS  PubMed  Google Scholar 

  24. Mizuyachi K, Hara K, Wakamatsu A, Nohda S, Hirama T. Safety and pharmacokinetic evaluation of intravenous colistin methanesulfonate sodium in Japanese healthy male subjects. Curr Med Res Opin. 2011;27:2261–70. https://doi.org/10.1185/03007995.2011.626557.

    Article  CAS  PubMed  Google Scholar 

  25. Garonzik SM, Li J, Thamlikitkul V, Paterson DL, Shoham S, Jacob J, Silveira FP, Forrest A, Nation RL. Population pharmacokinetics of Colistin Methanesulfonate and formed Colistin in critically ill patients from a multicenter study provide dosing suggestions for various categories of patients. Antimicrob Agents Chemother. 2011;55:3284–94. https://doi.org/10.1128/Aac.01733-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Plachouras D, Karvanen M, Friberg LE, Papadomichelakis E, Antoniadou A, Tsangaris I, Karaiskos I, Poulakou G, Kontopidou F, Armaganidis A, Cars O, Giamarellou H. Population pharmacokinetic analysis of colistin methanesulfonate and colistin after intravenous administration in critically ill patients with infections caused by gram-negative bacteria. Antimicrob Agents Chemother. 2009;53:3430–6. https://doi.org/10.1128/AAC.01361-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Magréault S, Mankikian J, Marchand S, Diot P, Couet W, Flament T, Grégoire N. Pharmacokinetics of colistin after nebulization or intravenous administration of colistin methanesulphonate (Colimycin®) to cystic fibrosis patients. J Cyst Fibros. 2020;19(3):421–6. https://doi.org/10.1016/j.jcf.2019.08.027

  28. Leuppi-Taegtmeyer AB, Decosterd L, Osthoff M, Mueller NJ, Buclin T, Corti N. 2019. Multicenter population pharmacokinetic study of Colistimethate sodium and Colistin dosed as in Normal renal function in patients on continuous renal replacement therapy. Antimicrob Agents Chemother. 63. https://doi.org/10.1128/AAC.01957-18.

  29. Couet W, Gregoire N, Marchand S, Mimoz O. Colistin pharmacokinetics: the fog is lifting. Clin Microbiol Infect. 2012;18:30–9. https://doi.org/10.1111/j.1469-0691.2011.03667.x.

    Article  CAS  PubMed  Google Scholar 

  30. Sugano K, Kansy M, Artursson P, Avdeef A, Bendels S, Di L, Ecker GF, Faller B, Fischer H, Gerebtzoff G, Lennernaes H, Senner F. Coexistence of passive and carrier-mediated processes in drug transport. Nat Rev Drug Discov. 2010;9:597–614. https://doi.org/10.1038/nrd3187.

    Article  CAS  PubMed  Google Scholar 

  31. Keppler D, Konig J. Hepatic canalicular membrane 5: expression and localization of the conjugate export pump encoded by the MRP2 (cMRP/cMOAT) gene in liver. FASEB J. 1997;11:509–16. https://doi.org/10.1096/fasebj.11.7.9212074.

    Article  CAS  PubMed  Google Scholar 

  32. Lundquist P, Englund G, Skogastierna C, Loof J, Johansson J, Hoogstraate J, Afzelius L, Andersson TB. Functional ATP-binding cassette drug efflux transporters in isolated human and rat hepatocytes significantly affect assessment of drug disposition. Drug Metab Dispos. 2014;42:448–58. https://doi.org/10.1124/dmd.113.054528.

    Article  CAS  PubMed  Google Scholar 

  33. Bow DAJ, Perry JL, Miller DS, Pritchard JB, Brouwer KLR. Localization of P-gp (Abcb1) and Mrp2 (Abcc2) in freshly isolated rat hepatocytes. Drug Metab Dispos. 2008;36:198–202. https://doi.org/10.1124/dmd.107.018200.

    Article  CAS  PubMed  Google Scholar 

  34. Michalopoulos AS, Falagas ME. 2011. Colistin: recent data on pharmacodynamics properties and clinical efficacy in critically ill patients. Ann Intensive Care. 1. Artn 30. https://doi.org/10.1186/2110-5820-1-30.

  35. Patilea-Vrana G, Unadkat JD. Transport vs. metabolism: what determines the pharmacokinetics and pharmacodynamics of drugs? Insights from the extended clearance model. Clin Pharm Ther. 2016;100:413–8. https://doi.org/10.1002/cpt.437.

    Article  CAS  Google Scholar 

  36. Vanwijngaerden YM, Wauters J, Langouche L, Vander Perre S, Liddle C, Coulter S, Vanderborght S, Roskams T, Wilmer A, Van den Berghe G, Mesotten D. Critical illness evokes elevated circulating bile acids related to altered hepatic transporter and nuclear receptor expression. Hepatol. 2011;54:1741–52. https://doi.org/10.1002/hep.24582.

    Article  CAS  Google Scholar 

  37. Michalopoulos AS, Falagas ME. Colistin: recent data on pharmacodynamics properties and clinical efficacy in critically ill patients. Ann Intensive Care. 2011;1:30. https://doi.org/10.1186/2110-5820-1-30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Viel A, Henri J, Bouchene S, Laroche J, Rolland JG, Manceau J, Laurentie M, Couet W, Gregoire N. A population WB-PBPK model of Colistin and its prodrug CMS in pigs: focus on the renal distribution and excretion. Pharm Res. 2018;35:92. https://doi.org/10.1007/s11095-018-2379-4.

    Article  CAS  PubMed  Google Scholar 

  39. Visentin M, Gai Z, Torozi A, Hiller C, Kullak-Ublick GA. Colistin is substrate of the carnitine/organic cation transporter 2 (OCTN2, SLC22A5). Drug Metab Dispos. 2017;45:1240–4. https://doi.org/10.1124/dmd.117.077248.

    Article  CAS  PubMed  Google Scholar 

  40. Lu X, Chan T, Xu C, Zhu L, Zhou QT, Roberts KD, Chan HK, Li J, Zhou F. Human oligopeptide transporter 2 (PEPT2) mediates cellular uptake of polymyxins. J Antimicrob Chemother. 2016;71:403–12. https://doi.org/10.1093/jac/dkv340.

    Article  CAS  PubMed  Google Scholar 

  41. Li J, Nation RL, Turnidge JD, Milne RW, Coulthard K, Rayner CR, Paterson DL. Colistin: the re-emerging antibiotic for multidrug-resistant gram-negative bacterial infections. Lancet Infect Dis. 2006;6:589–601. https://doi.org/10.1016/S1473-3099(06)70580-1.

    Article  CAS  PubMed  Google Scholar 

  42. Nicolai J, De Bruyn T, Van Veldhoven PP, Keemink J, Augustijns P, Annaert P. Verapamil hepatic clearance in four preclinical rat models: towards activity-based scaling. Biopharm Drug Dispos. 2015;36:462–80. https://doi.org/10.1002/bdd.1959.

    Article  CAS  PubMed  Google Scholar 

  43. Annaert PP, Turncliff RZ, Booth CL, Thakker DR, Brouwer KL. P-glycoprotein-mediated in vitro biliary excretion in sandwich-cultured rat hepatocytes. Drug Metab Dispos. 2001;29:1277–83.

    CAS  PubMed  Google Scholar 

  44. Nicolai J, De Bruyn T, Van Veldhoven PP, Keemink J, Augustijns P, Annaert P. Verapamil hepatic clearance in four preclinical rat models: towards activity-based scaling. Biopharm Drug Dispos. 2015;36:462–80. https://doi.org/10.1002/bdd.1959.

    Article  CAS  PubMed  Google Scholar 

  45. Nicolai J, Thevelin L, Bing Q, Stieger B, Chanteux H, Augustijns P, Annaert P. Role of the OATP transporter family and a Benzbromarone-SensitiveEfflux transporter in the hepatocellular disposition of vincristine. Pharm Res. 2017;34:2336–48. https://doi.org/10.1007/s11095-017-2241-0.

    Article  CAS  PubMed  Google Scholar 

  46. Qi B, Gijsen M, Van Brantegem P, De Vocht T, Deferm N, Abza GB, Nauwelaerts N, Wauters J, Spriet I, Annaert P. Quantitative determination of colistin a/B and colistin methanesulfonate in biological samples using hydrophilic interaction chromatography tandem mass spectrometry. Drug Test Anal. 2020;12:1183–95. https://doi.org/10.1002/dta.2812.

    Article  CAS  PubMed  Google Scholar 

  47. Obach RS. Prediction of human clearance of twenty-nine drugs from hepatic microsomal intrinsic clearance data: an examination of in vitro half-life approach and nonspecific binding to microsomes. Drug Metab Dispos. 1999;27:1350–9.

    CAS  PubMed  Google Scholar 

  48. Bayliss MK, Bell JA, Jenner WN, Park GR, Wilson K. Utility of hepatocytes to model species differences in the metabolism of loxtidine and to predict pharmacokinetic parameters in rat, dog and man. Xenobiotica. 1999;29:253–68. https://doi.org/10.1080/004982599238650.

    Article  CAS  PubMed  Google Scholar 

  49. De Bruyn T, Augustijns PF, Annaert PP. 2016. Hepatic clearance prediction of nine human immunodeficiency virus protease inhibitors in rat. J Pharm Sci. 105:846–853. https://doi.org/10.1002/jps.24559.

  50. Mohamed AF, Karaiskos I, Plachouras D, Karvanen M, Pontikis K, Jansson B, Papadomichelakis E, Antoniadou A, Giamarellou H, Armaganidis A, Cars O, Friberg LE. Application of a loading dose of colistin methanesulfonate in critically ill patients: population pharmacokinetics, protein binding, and prediction of bacterial kill. Antimicrob Agents Chemother. 2012;56:4241–9. https://doi.org/10.1128/AAC.06426-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Bing Qi received a PhD scholarship received from China Scholarship Council (CSC).

Funding

This research was supported in part by internal funds of the Drug Delivery and Disposition research unit of the KU Leuven Department of Pharmaceutical and Pharmacological Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pieter Annaert.

Ethics declarations

Conflict of Interest

The authors declared no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 110 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, B., Gijsen, M., De Vocht, T. et al. Unravelling the Hepatic Elimination Mechanisms of Colistin. Pharm Res 40, 1723–1734 (2023). https://doi.org/10.1007/s11095-023-03536-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-023-03536-7

Keywords

Navigation